sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9025, base_ring=CyclotomicField(1140))
M = H._module
chi = DirichletCharacter(H, M([1083,250]))
pari:[g,chi] = znchar(Mod(388,9025))
| Modulus: | \(9025\) | |
| Conductor: | \(9025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1140\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{9025}(8,\cdot)\)
\(\chi_{9025}(12,\cdot)\)
\(\chi_{9025}(27,\cdot)\)
\(\chi_{9025}(88,\cdot)\)
\(\chi_{9025}(103,\cdot)\)
\(\chi_{9025}(122,\cdot)\)
\(\chi_{9025}(183,\cdot)\)
\(\chi_{9025}(198,\cdot)\)
\(\chi_{9025}(202,\cdot)\)
\(\chi_{9025}(217,\cdot)\)
\(\chi_{9025}(278,\cdot)\)
\(\chi_{9025}(297,\cdot)\)
\(\chi_{9025}(312,\cdot)\)
\(\chi_{9025}(373,\cdot)\)
\(\chi_{9025}(388,\cdot)\)
\(\chi_{9025}(392,\cdot)\)
\(\chi_{9025}(483,\cdot)\)
\(\chi_{9025}(487,\cdot)\)
\(\chi_{9025}(502,\cdot)\)
\(\chi_{9025}(563,\cdot)\)
\(\chi_{9025}(578,\cdot)\)
\(\chi_{9025}(597,\cdot)\)
\(\chi_{9025}(658,\cdot)\)
\(\chi_{9025}(673,\cdot)\)
\(\chi_{9025}(677,\cdot)\)
\(\chi_{9025}(692,\cdot)\)
\(\chi_{9025}(753,\cdot)\)
\(\chi_{9025}(772,\cdot)\)
\(\chi_{9025}(787,\cdot)\)
\(\chi_{9025}(848,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5777,3251)\) → \((e\left(\frac{19}{20}\right),e\left(\frac{25}{114}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 9025 }(388, a) \) |
\(1\) | \(1\) | \(e\left(\frac{193}{1140}\right)\) | \(e\left(\frac{151}{1140}\right)\) | \(e\left(\frac{193}{570}\right)\) | \(e\left(\frac{86}{285}\right)\) | \(e\left(\frac{49}{76}\right)\) | \(e\left(\frac{193}{380}\right)\) | \(e\left(\frac{151}{570}\right)\) | \(e\left(\frac{54}{95}\right)\) | \(e\left(\frac{179}{380}\right)\) | \(e\left(\frac{227}{1140}\right)\) |
sage:chi.jacobi_sum(n)