Properties

Label 9025.388
Modulus $9025$
Conductor $9025$
Order $1140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(1140)) M = H._module chi = DirichletCharacter(H, M([1083,250]))
 
Copy content pari:[g,chi] = znchar(Mod(388,9025))
 

Basic properties

Modulus: \(9025\)
Conductor: \(9025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9025.cn

\(\chi_{9025}(8,\cdot)\) \(\chi_{9025}(12,\cdot)\) \(\chi_{9025}(27,\cdot)\) \(\chi_{9025}(88,\cdot)\) \(\chi_{9025}(103,\cdot)\) \(\chi_{9025}(122,\cdot)\) \(\chi_{9025}(183,\cdot)\) \(\chi_{9025}(198,\cdot)\) \(\chi_{9025}(202,\cdot)\) \(\chi_{9025}(217,\cdot)\) \(\chi_{9025}(278,\cdot)\) \(\chi_{9025}(297,\cdot)\) \(\chi_{9025}(312,\cdot)\) \(\chi_{9025}(373,\cdot)\) \(\chi_{9025}(388,\cdot)\) \(\chi_{9025}(392,\cdot)\) \(\chi_{9025}(483,\cdot)\) \(\chi_{9025}(487,\cdot)\) \(\chi_{9025}(502,\cdot)\) \(\chi_{9025}(563,\cdot)\) \(\chi_{9025}(578,\cdot)\) \(\chi_{9025}(597,\cdot)\) \(\chi_{9025}(658,\cdot)\) \(\chi_{9025}(673,\cdot)\) \(\chi_{9025}(677,\cdot)\) \(\chi_{9025}(692,\cdot)\) \(\chi_{9025}(753,\cdot)\) \(\chi_{9025}(772,\cdot)\) \(\chi_{9025}(787,\cdot)\) \(\chi_{9025}(848,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1140})$
Fixed field: Number field defined by a degree 1140 polynomial (not computed)

Values on generators

\((5777,3251)\) → \((e\left(\frac{19}{20}\right),e\left(\frac{25}{114}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 9025 }(388, a) \) \(1\)\(1\)\(e\left(\frac{193}{1140}\right)\)\(e\left(\frac{151}{1140}\right)\)\(e\left(\frac{193}{570}\right)\)\(e\left(\frac{86}{285}\right)\)\(e\left(\frac{49}{76}\right)\)\(e\left(\frac{193}{380}\right)\)\(e\left(\frac{151}{570}\right)\)\(e\left(\frac{54}{95}\right)\)\(e\left(\frac{179}{380}\right)\)\(e\left(\frac{227}{1140}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9025 }(388,a) \;\) at \(\;a = \) e.g. 2