sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9025, base_ring=CyclotomicField(380))
M = H._module
chi = DirichletCharacter(H, M([171,50]))
pari:[g,chi] = znchar(Mod(37,9025))
| Modulus: | \(9025\) | |
| Conductor: | \(9025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(380\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{9025}(37,\cdot)\)
\(\chi_{9025}(113,\cdot)\)
\(\chi_{9025}(208,\cdot)\)
\(\chi_{9025}(227,\cdot)\)
\(\chi_{9025}(303,\cdot)\)
\(\chi_{9025}(322,\cdot)\)
\(\chi_{9025}(398,\cdot)\)
\(\chi_{9025}(417,\cdot)\)
\(\chi_{9025}(512,\cdot)\)
\(\chi_{9025}(588,\cdot)\)
\(\chi_{9025}(683,\cdot)\)
\(\chi_{9025}(702,\cdot)\)
\(\chi_{9025}(778,\cdot)\)
\(\chi_{9025}(797,\cdot)\)
\(\chi_{9025}(873,\cdot)\)
\(\chi_{9025}(892,\cdot)\)
\(\chi_{9025}(987,\cdot)\)
\(\chi_{9025}(1063,\cdot)\)
\(\chi_{9025}(1158,\cdot)\)
\(\chi_{9025}(1177,\cdot)\)
\(\chi_{9025}(1253,\cdot)\)
\(\chi_{9025}(1272,\cdot)\)
\(\chi_{9025}(1348,\cdot)\)
\(\chi_{9025}(1367,\cdot)\)
\(\chi_{9025}(1462,\cdot)\)
\(\chi_{9025}(1538,\cdot)\)
\(\chi_{9025}(1633,\cdot)\)
\(\chi_{9025}(1652,\cdot)\)
\(\chi_{9025}(1728,\cdot)\)
\(\chi_{9025}(1747,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5777,3251)\) → \((e\left(\frac{9}{20}\right),e\left(\frac{5}{38}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 9025 }(37, a) \) |
\(1\) | \(1\) | \(e\left(\frac{221}{380}\right)\) | \(e\left(\frac{167}{380}\right)\) | \(e\left(\frac{31}{190}\right)\) | \(e\left(\frac{2}{95}\right)\) | \(e\left(\frac{75}{76}\right)\) | \(e\left(\frac{283}{380}\right)\) | \(e\left(\frac{167}{190}\right)\) | \(e\left(\frac{59}{95}\right)\) | \(e\left(\frac{229}{380}\right)\) | \(e\left(\frac{319}{380}\right)\) |
sage:chi.jacobi_sum(n)