# Properties

 Label 900.29 Modulus $900$ Conductor $225$ Order $30$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(900, base_ring=CyclotomicField(30))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,5,3]))

pari: [g,chi] = znchar(Mod(29,900))

## Basic properties

 Modulus: $$900$$ Conductor: $$225$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$30$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{225}(29,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 900.bo

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{15})$$ Fixed field: 30.0.1311978395502159643834172442211638553999364376068115234375.1

## Values on generators

$$(451,101,577)$$ → $$(1,e\left(\frac{1}{6}\right),e\left(\frac{1}{10}\right))$$

## Values

 $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{23}{30}\right)$$ $$e\left(\frac{7}{30}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{30}\right)$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 900 }(29,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{900}(29,\cdot)) = \sum_{r\in \Z/900\Z} \chi_{900}(29,r) e\left(\frac{r}{450}\right) = -2.3015708438+29.9115825668i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 900 }(29,·),\chi_{ 900 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{900}(29,\cdot),\chi_{900}(1,\cdot)) = \sum_{r\in \Z/900\Z} \chi_{900}(29,r) \chi_{900}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 900 }(29,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{900}(29,·)) = \sum_{r \in \Z/900\Z} \chi_{900}(29,r) e\left(\frac{1 r + 2 r^{-1}}{900}\right) = -0.0$$