sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(897, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,16]))
pari:[g,chi] = znchar(Mod(233,897))
| Modulus: | \(897\) | |
| Conductor: | \(897\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{897}(77,\cdot)\)
\(\chi_{897}(233,\cdot)\)
\(\chi_{897}(311,\cdot)\)
\(\chi_{897}(545,\cdot)\)
\(\chi_{897}(584,\cdot)\)
\(\chi_{897}(623,\cdot)\)
\(\chi_{897}(662,\cdot)\)
\(\chi_{897}(740,\cdot)\)
\(\chi_{897}(818,\cdot)\)
\(\chi_{897}(857,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((599,691,235)\) → \((-1,-1,e\left(\frac{8}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 897 }(233, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)