Properties

Label 8925.jp
Modulus $8925$
Conductor $1275$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8925, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,8,0,65])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(29,8925)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8925\)
Conductor: \(1275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1275.cr
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{8925}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(554,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(1184,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{8925}(1289,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8925}(1604,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{8925}(1814,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(2234,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(2339,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(2759,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(2969,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{8925}(3284,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8925}(3389,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{8925}(4019,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(4544,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(4754,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{8925}(4859,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8925}(5069,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8925}(5384,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(5804,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(5909,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(6329,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(6539,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{8925}(6644,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8925}(6854,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8925}(6959,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{8925}(7169,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(7589,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(7694,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{8925}(8114,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{8925}(8429,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8925}(8639,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{5}{8}\right)\)