Properties

Label 891.146
Modulus $891$
Conductor $891$
Order $270$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(270)) M = H._module chi = DirichletCharacter(H, M([155,216]))
 
Copy content pari:[g,chi] = znchar(Mod(146,891))
 

Basic properties

Modulus: \(891\)
Conductor: \(891\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(270\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 891.be

\(\chi_{891}(5,\cdot)\) \(\chi_{891}(14,\cdot)\) \(\chi_{891}(20,\cdot)\) \(\chi_{891}(38,\cdot)\) \(\chi_{891}(47,\cdot)\) \(\chi_{891}(59,\cdot)\) \(\chi_{891}(86,\cdot)\) \(\chi_{891}(92,\cdot)\) \(\chi_{891}(104,\cdot)\) \(\chi_{891}(113,\cdot)\) \(\chi_{891}(119,\cdot)\) \(\chi_{891}(137,\cdot)\) \(\chi_{891}(146,\cdot)\) \(\chi_{891}(158,\cdot)\) \(\chi_{891}(185,\cdot)\) \(\chi_{891}(191,\cdot)\) \(\chi_{891}(203,\cdot)\) \(\chi_{891}(212,\cdot)\) \(\chi_{891}(218,\cdot)\) \(\chi_{891}(236,\cdot)\) \(\chi_{891}(245,\cdot)\) \(\chi_{891}(257,\cdot)\) \(\chi_{891}(284,\cdot)\) \(\chi_{891}(290,\cdot)\) \(\chi_{891}(302,\cdot)\) \(\chi_{891}(311,\cdot)\) \(\chi_{891}(317,\cdot)\) \(\chi_{891}(335,\cdot)\) \(\chi_{891}(344,\cdot)\) \(\chi_{891}(356,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{135})$
Fixed field: Number field defined by a degree 270 polynomial (not computed)

Values on generators

\((650,244)\) → \((e\left(\frac{31}{54}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 891 }(146, a) \) \(-1\)\(1\)\(e\left(\frac{101}{270}\right)\)\(e\left(\frac{101}{135}\right)\)\(e\left(\frac{109}{270}\right)\)\(e\left(\frac{106}{135}\right)\)\(e\left(\frac{11}{90}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{53}{135}\right)\)\(e\left(\frac{43}{270}\right)\)\(e\left(\frac{67}{135}\right)\)\(e\left(\frac{13}{90}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 891 }(146,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 891 }(146,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 891 }(146,·),\chi_{ 891 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 891 }(146,·)) \;\) at \(\; a,b = \) e.g. 1,2