Properties

Label 889.298
Modulus $889$
Conductor $889$
Order $63$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([84,86]))
 
Copy content pari:[g,chi] = znchar(Mod(298,889))
 

Basic properties

Modulus: \(889\)
Conductor: \(889\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 889.cb

\(\chi_{889}(11,\cdot)\) \(\chi_{889}(18,\cdot)\) \(\chi_{889}(30,\cdot)\) \(\chi_{889}(74,\cdot)\) \(\chi_{889}(79,\cdot)\) \(\chi_{889}(88,\cdot)\) \(\chi_{889}(121,\cdot)\) \(\chi_{889}(142,\cdot)\) \(\chi_{889}(144,\cdot)\) \(\chi_{889}(198,\cdot)\) \(\chi_{889}(240,\cdot)\) \(\chi_{889}(247,\cdot)\) \(\chi_{889}(263,\cdot)\) \(\chi_{889}(289,\cdot)\) \(\chi_{889}(298,\cdot)\) \(\chi_{889}(324,\cdot)\) \(\chi_{889}(326,\cdot)\) \(\chi_{889}(394,\cdot)\) \(\chi_{889}(417,\cdot)\) \(\chi_{889}(443,\cdot)\) \(\chi_{889}(485,\cdot)\) \(\chi_{889}(529,\cdot)\) \(\chi_{889}(534,\cdot)\) \(\chi_{889}(550,\cdot)\) \(\chi_{889}(557,\cdot)\) \(\chi_{889}(592,\cdot)\) \(\chi_{889}(606,\cdot)\) \(\chi_{889}(632,\cdot)\) \(\chi_{889}(669,\cdot)\) \(\chi_{889}(676,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

Values on generators

\((255,638)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{43}{63}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 889 }(298, a) \) \(1\)\(1\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{22}{63}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{52}{63}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{44}{63}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{5}{63}\right)\)\(e\left(\frac{19}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 889 }(298,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 889 }(298,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 889 }(298,·),\chi_{ 889 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 889 }(298,·)) \;\) at \(\; a,b = \) e.g. 1,2