Properties

Label 8820.ih
Modulus $8820$
Conductor $8820$
Order $84$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8820, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([42,28,21,52])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(247,8820)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8820\)
Conductor: \(8820\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{8820}(247,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(-1\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{25}{84}\right)\)
\(\chi_{8820}(403,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(-1\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{84}\right)\)
\(\chi_{8820}(907,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(-1\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{84}\right)\)
\(\chi_{8820}(1003,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(-1\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{43}{84}\right)\)
\(\chi_{8820}(1507,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(-1\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{84}\right)\)
\(\chi_{8820}(1663,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(-1\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{47}{84}\right)\)
\(\chi_{8820}(2167,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(-1\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{53}{84}\right)\)
\(\chi_{8820}(2263,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(-1\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{31}{84}\right)\)
\(\chi_{8820}(2767,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(-1\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{84}\right)\)
\(\chi_{8820}(2923,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(-1\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{83}{84}\right)\)
\(\chi_{8820}(3427,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(-1\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{84}\right)\)
\(\chi_{8820}(3523,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(-1\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{84}\right)\)
\(\chi_{8820}(4027,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(-1\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{73}{84}\right)\)
\(\chi_{8820}(4687,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(-1\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{41}{84}\right)\)
\(\chi_{8820}(5287,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(-1\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{61}{84}\right)\)
\(\chi_{8820}(5443,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(-1\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{71}{84}\right)\)
\(\chi_{8820}(6043,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(-1\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{79}{84}\right)\)
\(\chi_{8820}(6703,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(-1\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{23}{84}\right)\)
\(\chi_{8820}(7207,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(-1\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{29}{84}\right)\)
\(\chi_{8820}(7303,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(-1\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{67}{84}\right)\)
\(\chi_{8820}(7807,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(-1\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{37}{84}\right)\)
\(\chi_{8820}(7963,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(-1\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{59}{84}\right)\)
\(\chi_{8820}(8467,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(-1\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{65}{84}\right)\)
\(\chi_{8820}(8563,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(-1\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{55}{84}\right)\)