sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,7,6]))
pari:[g,chi] = znchar(Mod(7379,8820))
\(\chi_{8820}(2339,\cdot)\)
\(\chi_{8820}(3599,\cdot)\)
\(\chi_{8820}(4859,\cdot)\)
\(\chi_{8820}(6119,\cdot)\)
\(\chi_{8820}(7379,\cdot)\)
\(\chi_{8820}(8639,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4411,7841,7057,1081)\) → \((-1,-1,-1,e\left(\frac{3}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 8820 }(7379, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(-1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) |
sage:chi.jacobi_sum(n)