sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,14,21,2]))
pari:[g,chi] = znchar(Mod(2747,8820))
Modulus: | \(8820\) | |
Conductor: | \(8820\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8820}(383,\cdot)\)
\(\chi_{8820}(887,\cdot)\)
\(\chi_{8820}(983,\cdot)\)
\(\chi_{8820}(1487,\cdot)\)
\(\chi_{8820}(1643,\cdot)\)
\(\chi_{8820}(2147,\cdot)\)
\(\chi_{8820}(2243,\cdot)\)
\(\chi_{8820}(2747,\cdot)\)
\(\chi_{8820}(2903,\cdot)\)
\(\chi_{8820}(3407,\cdot)\)
\(\chi_{8820}(3503,\cdot)\)
\(\chi_{8820}(4007,\cdot)\)
\(\chi_{8820}(4163,\cdot)\)
\(\chi_{8820}(4667,\cdot)\)
\(\chi_{8820}(4763,\cdot)\)
\(\chi_{8820}(5267,\cdot)\)
\(\chi_{8820}(5423,\cdot)\)
\(\chi_{8820}(5927,\cdot)\)
\(\chi_{8820}(6023,\cdot)\)
\(\chi_{8820}(6527,\cdot)\)
\(\chi_{8820}(7187,\cdot)\)
\(\chi_{8820}(7787,\cdot)\)
\(\chi_{8820}(7943,\cdot)\)
\(\chi_{8820}(8543,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4411,7841,7057,1081)\) → \((-1,e\left(\frac{1}{6}\right),i,e\left(\frac{1}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 8820 }(2747, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(1\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{84}\right)\) |
sage:chi.jacobi_sum(n)