Properties

Label 8820.2333
Modulus $8820$
Conductor $315$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8820, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,2,9,4]))
 
Copy content pari:[g,chi] = znchar(Mod(2333,8820))
 

Basic properties

Modulus: \(8820\)
Conductor: \(315\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{315}(128,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8820.dn

\(\chi_{8820}(1733,\cdot)\) \(\chi_{8820}(2333,\cdot)\) \(\chi_{8820}(3497,\cdot)\) \(\chi_{8820}(4097,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.4362113325015017578125.2

Values on generators

\((4411,7841,7057,1081)\) → \((1,e\left(\frac{1}{6}\right),-i,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 8820 }(2333, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{11}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8820 }(2333,a) \;\) at \(\;a = \) e.g. 2