sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,0,12]))
pari:[g,chi] = znchar(Mod(1331,8820))
\(\chi_{8820}(71,\cdot)\)
\(\chi_{8820}(1331,\cdot)\)
\(\chi_{8820}(2591,\cdot)\)
\(\chi_{8820}(3851,\cdot)\)
\(\chi_{8820}(5111,\cdot)\)
\(\chi_{8820}(7631,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4411,7841,7057,1081)\) → \((-1,-1,1,e\left(\frac{6}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 8820 }(1331, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(-1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(-1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) |
sage:chi.jacobi_sum(n)