Properties

Label 880.61
Modulus $880$
Conductor $176$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,15,0,18]))
 
Copy content pari:[g,chi] = znchar(Mod(61,880))
 

Basic properties

Modulus: \(880\)
Conductor: \(176\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{176}(61,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 880.ck

\(\chi_{880}(61,\cdot)\) \(\chi_{880}(101,\cdot)\) \(\chi_{880}(261,\cdot)\) \(\chi_{880}(381,\cdot)\) \(\chi_{880}(501,\cdot)\) \(\chi_{880}(541,\cdot)\) \(\chi_{880}(701,\cdot)\) \(\chi_{880}(821,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.200317132330035063121671003054276608.1

Values on generators

\((111,661,177,321)\) → \((1,-i,1,e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 880 }(61, a) \) \(-1\)\(1\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(i\)\(-1\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{11}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 880 }(61,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 880 }(61,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 880 }(61,·),\chi_{ 880 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 880 }(61,·)) \;\) at \(\; a,b = \) e.g. 1,2