sage: H = DirichletGroup(8788)
pari: g = idealstar(,8788,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 4056 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2028}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{8788}(4395,\cdot)$, $\chi_{8788}(6593,\cdot)$ |
First 32 of 4056 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8788}(1,\cdot)\) | 8788.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{8788}(3,\cdot)\) | 8788.bf | 1014 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{1014}\right)\) | \(e\left(\frac{93}{169}\right)\) | \(e\left(\frac{199}{1014}\right)\) | \(e\left(\frac{5}{507}\right)\) | \(e\left(\frac{965}{1014}\right)\) | \(e\left(\frac{563}{1014}\right)\) | \(e\left(\frac{158}{507}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{34}{169}\right)\) | \(e\left(\frac{41}{78}\right)\) |
\(\chi_{8788}(5,\cdot)\) | 8788.be | 676 | no | \(-1\) | \(1\) | \(e\left(\frac{93}{169}\right)\) | \(e\left(\frac{651}{676}\right)\) | \(e\left(\frac{373}{676}\right)\) | \(e\left(\frac{17}{169}\right)\) | \(e\left(\frac{309}{676}\right)\) | \(e\left(\frac{347}{676}\right)\) | \(e\left(\frac{297}{338}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{69}{676}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{8788}(7,\cdot)\) | 8788.bj | 2028 | yes | \(1\) | \(1\) | \(e\left(\frac{199}{1014}\right)\) | \(e\left(\frac{373}{676}\right)\) | \(e\left(\frac{1543}{2028}\right)\) | \(e\left(\frac{199}{507}\right)\) | \(e\left(\frac{1271}{2028}\right)\) | \(e\left(\frac{1517}{2028}\right)\) | \(e\left(\frac{713}{1014}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{647}{676}\right)\) | \(e\left(\frac{32}{39}\right)\) |
\(\chi_{8788}(9,\cdot)\) | 8788.bc | 507 | no | \(1\) | \(1\) | \(e\left(\frac{5}{507}\right)\) | \(e\left(\frac{17}{169}\right)\) | \(e\left(\frac{199}{507}\right)\) | \(e\left(\frac{10}{507}\right)\) | \(e\left(\frac{458}{507}\right)\) | \(e\left(\frac{56}{507}\right)\) | \(e\left(\frac{316}{507}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{68}{169}\right)\) | \(e\left(\frac{2}{39}\right)\) |
\(\chi_{8788}(11,\cdot)\) | 8788.bj | 2028 | yes | \(1\) | \(1\) | \(e\left(\frac{965}{1014}\right)\) | \(e\left(\frac{309}{676}\right)\) | \(e\left(\frac{1271}{2028}\right)\) | \(e\left(\frac{458}{507}\right)\) | \(e\left(\frac{859}{2028}\right)\) | \(e\left(\frac{829}{2028}\right)\) | \(e\left(\frac{655}{1014}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{391}{676}\right)\) | \(e\left(\frac{37}{39}\right)\) |
\(\chi_{8788}(15,\cdot)\) | 8788.bj | 2028 | yes | \(1\) | \(1\) | \(e\left(\frac{563}{1014}\right)\) | \(e\left(\frac{347}{676}\right)\) | \(e\left(\frac{1517}{2028}\right)\) | \(e\left(\frac{56}{507}\right)\) | \(e\left(\frac{829}{2028}\right)\) | \(e\left(\frac{139}{2028}\right)\) | \(e\left(\frac{193}{1014}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{205}{676}\right)\) | \(e\left(\frac{19}{39}\right)\) |
\(\chi_{8788}(17,\cdot)\) | 8788.bg | 1014 | no | \(1\) | \(1\) | \(e\left(\frac{158}{507}\right)\) | \(e\left(\frac{297}{338}\right)\) | \(e\left(\frac{713}{1014}\right)\) | \(e\left(\frac{316}{507}\right)\) | \(e\left(\frac{655}{1014}\right)\) | \(e\left(\frac{193}{1014}\right)\) | \(e\left(\frac{454}{507}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{5}{338}\right)\) | \(e\left(\frac{32}{39}\right)\) |
\(\chi_{8788}(19,\cdot)\) | 8788.w | 156 | no | \(1\) | \(1\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{8788}(21,\cdot)\) | 8788.be | 676 | no | \(-1\) | \(1\) | \(e\left(\frac{34}{169}\right)\) | \(e\left(\frac{69}{676}\right)\) | \(e\left(\frac{647}{676}\right)\) | \(e\left(\frac{68}{169}\right)\) | \(e\left(\frac{391}{676}\right)\) | \(e\left(\frac{205}{676}\right)\) | \(e\left(\frac{5}{338}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{107}{676}\right)\) | \(e\left(\frac{9}{26}\right)\) |
\(\chi_{8788}(23,\cdot)\) | 8788.u | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{8788}(25,\cdot)\) | 8788.ba | 338 | no | \(1\) | \(1\) | \(e\left(\frac{17}{169}\right)\) | \(e\left(\frac{313}{338}\right)\) | \(e\left(\frac{35}{338}\right)\) | \(e\left(\frac{34}{169}\right)\) | \(e\left(\frac{309}{338}\right)\) | \(e\left(\frac{9}{338}\right)\) | \(e\left(\frac{128}{169}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{69}{338}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{8788}(27,\cdot)\) | 8788.bb | 338 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{338}\right)\) | \(e\left(\frac{110}{169}\right)\) | \(e\left(\frac{199}{338}\right)\) | \(e\left(\frac{5}{169}\right)\) | \(e\left(\frac{289}{338}\right)\) | \(e\left(\frac{225}{338}\right)\) | \(e\left(\frac{158}{169}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{102}{169}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{8788}(29,\cdot)\) | 8788.bc | 507 | no | \(1\) | \(1\) | \(e\left(\frac{421}{507}\right)\) | \(e\left(\frac{147}{169}\right)\) | \(e\left(\frac{329}{507}\right)\) | \(e\left(\frac{335}{507}\right)\) | \(e\left(\frac{133}{507}\right)\) | \(e\left(\frac{355}{507}\right)\) | \(e\left(\frac{446}{507}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{81}{169}\right)\) | \(e\left(\frac{28}{39}\right)\) |
\(\chi_{8788}(31,\cdot)\) | 8788.bd | 676 | yes | \(1\) | \(1\) | \(e\left(\frac{265}{338}\right)\) | \(e\left(\frac{167}{676}\right)\) | \(e\left(\frac{307}{676}\right)\) | \(e\left(\frac{96}{169}\right)\) | \(e\left(\frac{383}{676}\right)\) | \(e\left(\frac{21}{676}\right)\) | \(e\left(\frac{17}{338}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{161}{676}\right)\) | \(e\left(\frac{1}{13}\right)\) |
\(\chi_{8788}(33,\cdot)\) | 8788.bi | 2028 | no | \(-1\) | \(1\) | \(e\left(\frac{485}{507}\right)\) | \(e\left(\frac{5}{676}\right)\) | \(e\left(\frac{1669}{2028}\right)\) | \(e\left(\frac{463}{507}\right)\) | \(e\left(\frac{761}{2028}\right)\) | \(e\left(\frac{1955}{2028}\right)\) | \(e\left(\frac{971}{1014}\right)\) | \(e\left(\frac{55}{156}\right)\) | \(e\left(\frac{527}{676}\right)\) | \(e\left(\frac{37}{78}\right)\) |
\(\chi_{8788}(35,\cdot)\) | 8788.bf | 1014 | yes | \(-1\) | \(1\) | \(e\left(\frac{757}{1014}\right)\) | \(e\left(\frac{87}{169}\right)\) | \(e\left(\frac{317}{1014}\right)\) | \(e\left(\frac{250}{507}\right)\) | \(e\left(\frac{85}{1014}\right)\) | \(e\left(\frac{265}{1014}\right)\) | \(e\left(\frac{295}{507}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{10}{169}\right)\) | \(e\left(\frac{61}{78}\right)\) |
\(\chi_{8788}(37,\cdot)\) | 8788.bi | 2028 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{507}\right)\) | \(e\left(\frac{453}{676}\right)\) | \(e\left(\frac{869}{2028}\right)\) | \(e\left(\frac{2}{507}\right)\) | \(e\left(\frac{265}{2028}\right)\) | \(e\left(\frac{1363}{2028}\right)\) | \(e\left(\frac{25}{1014}\right)\) | \(e\left(\frac{95}{156}\right)\) | \(e\left(\frac{291}{676}\right)\) | \(e\left(\frac{71}{78}\right)\) |
\(\chi_{8788}(41,\cdot)\) | 8788.bi | 2028 | no | \(-1\) | \(1\) | \(e\left(\frac{412}{507}\right)\) | \(e\left(\frac{567}{676}\right)\) | \(e\left(\frac{1607}{2028}\right)\) | \(e\left(\frac{317}{507}\right)\) | \(e\left(\frac{175}{2028}\right)\) | \(e\left(\frac{1321}{2028}\right)\) | \(e\left(\frac{667}{1014}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{409}{676}\right)\) | \(e\left(\frac{41}{78}\right)\) |
\(\chi_{8788}(43,\cdot)\) | 8788.bh | 1014 | yes | \(-1\) | \(1\) | \(e\left(\frac{661}{1014}\right)\) | \(e\left(\frac{287}{338}\right)\) | \(e\left(\frac{124}{507}\right)\) | \(e\left(\frac{154}{507}\right)\) | \(e\left(\frac{158}{507}\right)\) | \(e\left(\frac{254}{507}\right)\) | \(e\left(\frac{202}{507}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{303}{338}\right)\) | \(e\left(\frac{7}{78}\right)\) |
\(\chi_{8788}(45,\cdot)\) | 8788.bi | 2028 | no | \(-1\) | \(1\) | \(e\left(\frac{284}{507}\right)\) | \(e\left(\frac{43}{676}\right)\) | \(e\left(\frac{1915}{2028}\right)\) | \(e\left(\frac{61}{507}\right)\) | \(e\left(\frac{731}{2028}\right)\) | \(e\left(\frac{1265}{2028}\right)\) | \(e\left(\frac{509}{1014}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{341}{676}\right)\) | \(e\left(\frac{1}{78}\right)\) |
\(\chi_{8788}(47,\cdot)\) | 8788.bd | 676 | yes | \(1\) | \(1\) | \(e\left(\frac{249}{338}\right)\) | \(e\left(\frac{449}{676}\right)\) | \(e\left(\frac{453}{676}\right)\) | \(e\left(\frac{80}{169}\right)\) | \(e\left(\frac{629}{676}\right)\) | \(e\left(\frac{271}{676}\right)\) | \(e\left(\frac{155}{338}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{275}{676}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{8788}(49,\cdot)\) | 8788.bg | 1014 | no | \(1\) | \(1\) | \(e\left(\frac{199}{507}\right)\) | \(e\left(\frac{35}{338}\right)\) | \(e\left(\frac{529}{1014}\right)\) | \(e\left(\frac{398}{507}\right)\) | \(e\left(\frac{257}{1014}\right)\) | \(e\left(\frac{503}{1014}\right)\) | \(e\left(\frac{206}{507}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{309}{338}\right)\) | \(e\left(\frac{25}{39}\right)\) |
\(\chi_{8788}(51,\cdot)\) | 8788.z | 338 | yes | \(-1\) | \(1\) | \(e\left(\frac{107}{338}\right)\) | \(e\left(\frac{145}{338}\right)\) | \(e\left(\frac{152}{169}\right)\) | \(e\left(\frac{107}{169}\right)\) | \(e\left(\frac{101}{169}\right)\) | \(e\left(\frac{126}{169}\right)\) | \(e\left(\frac{35}{169}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{73}{338}\right)\) | \(e\left(\frac{9}{26}\right)\) |
\(\chi_{8788}(53,\cdot)\) | 8788.y | 169 | no | \(1\) | \(1\) | \(e\left(\frac{109}{169}\right)\) | \(e\left(\frac{64}{169}\right)\) | \(e\left(\frac{147}{169}\right)\) | \(e\left(\frac{49}{169}\right)\) | \(e\left(\frac{81}{169}\right)\) | \(e\left(\frac{4}{169}\right)\) | \(e\left(\frac{95}{169}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{87}{169}\right)\) | \(e\left(\frac{2}{13}\right)\) |
\(\chi_{8788}(55,\cdot)\) | 8788.bf | 1014 | yes | \(-1\) | \(1\) | \(e\left(\frac{509}{1014}\right)\) | \(e\left(\frac{71}{169}\right)\) | \(e\left(\frac{181}{1014}\right)\) | \(e\left(\frac{2}{507}\right)\) | \(e\left(\frac{893}{1014}\right)\) | \(e\left(\frac{935}{1014}\right)\) | \(e\left(\frac{266}{507}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{115}{169}\right)\) | \(e\left(\frac{71}{78}\right)\) |
\(\chi_{8788}(57,\cdot)\) | 8788.be | 676 | no | \(-1\) | \(1\) | \(e\left(\frac{68}{169}\right)\) | \(e\left(\frac{307}{676}\right)\) | \(e\left(\frac{449}{676}\right)\) | \(e\left(\frac{136}{169}\right)\) | \(e\left(\frac{613}{676}\right)\) | \(e\left(\frac{579}{676}\right)\) | \(e\left(\frac{179}{338}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{45}{676}\right)\) | \(e\left(\frac{5}{26}\right)\) |
\(\chi_{8788}(59,\cdot)\) | 8788.bj | 2028 | yes | \(1\) | \(1\) | \(e\left(\frac{181}{1014}\right)\) | \(e\left(\frac{521}{676}\right)\) | \(e\left(\frac{1327}{2028}\right)\) | \(e\left(\frac{181}{507}\right)\) | \(e\left(\frac{407}{2028}\right)\) | \(e\left(\frac{1925}{2028}\right)\) | \(e\left(\frac{995}{1014}\right)\) | \(e\left(\frac{37}{156}\right)\) | \(e\left(\frac{563}{676}\right)\) | \(e\left(\frac{5}{39}\right)\) |
\(\chi_{8788}(61,\cdot)\) | 8788.bc | 507 | no | \(1\) | \(1\) | \(e\left(\frac{11}{507}\right)\) | \(e\left(\frac{105}{169}\right)\) | \(e\left(\frac{235}{507}\right)\) | \(e\left(\frac{22}{507}\right)\) | \(e\left(\frac{95}{507}\right)\) | \(e\left(\frac{326}{507}\right)\) | \(e\left(\frac{391}{507}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{82}{169}\right)\) | \(e\left(\frac{20}{39}\right)\) |
\(\chi_{8788}(63,\cdot)\) | 8788.bj | 2028 | yes | \(1\) | \(1\) | \(e\left(\frac{209}{1014}\right)\) | \(e\left(\frac{441}{676}\right)\) | \(e\left(\frac{311}{2028}\right)\) | \(e\left(\frac{209}{507}\right)\) | \(e\left(\frac{1075}{2028}\right)\) | \(e\left(\frac{1741}{2028}\right)\) | \(e\left(\frac{331}{1014}\right)\) | \(e\left(\frac{41}{156}\right)\) | \(e\left(\frac{243}{676}\right)\) | \(e\left(\frac{34}{39}\right)\) |
\(\chi_{8788}(67,\cdot)\) | 8788.bj | 2028 | yes | \(1\) | \(1\) | \(e\left(\frac{227}{1014}\right)\) | \(e\left(\frac{631}{676}\right)\) | \(e\left(\frac{1541}{2028}\right)\) | \(e\left(\frac{227}{507}\right)\) | \(e\left(\frac{925}{2028}\right)\) | \(e\left(\frac{319}{2028}\right)\) | \(e\left(\frac{49}{1014}\right)\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{665}{676}\right)\) | \(e\left(\frac{22}{39}\right)\) |
\(\chi_{8788}(69,\cdot)\) | 8788.bg | 1014 | no | \(1\) | \(1\) | \(e\left(\frac{269}{507}\right)\) | \(e\left(\frac{173}{338}\right)\) | \(e\left(\frac{17}{1014}\right)\) | \(e\left(\frac{31}{507}\right)\) | \(e\left(\frac{913}{1014}\right)\) | \(e\left(\frac{43}{1014}\right)\) | \(e\left(\frac{67}{507}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{185}{338}\right)\) | \(e\left(\frac{14}{39}\right)\) |