Properties

Label 875.bf
Modulus $875$
Conductor $875$
Order $150$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(150)) M = H._module chi = DirichletCharacter(H, M([27,125])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(19,875)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(875\)
Conductor: \(875\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(150\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{75})$
Fixed field: Number field defined by a degree 150 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(8\) \(9\) \(11\) \(12\) \(13\) \(16\)
\(\chi_{875}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{150}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{47}{50}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{29}{75}\right)\)
\(\chi_{875}(54,\cdot)\) \(-1\) \(1\) \(e\left(\frac{133}{150}\right)\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{13}{50}\right)\) \(e\left(\frac{33}{50}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{41}{75}\right)\)
\(\chi_{875}(59,\cdot)\) \(-1\) \(1\) \(e\left(\frac{101}{150}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{11}{50}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{52}{75}\right)\)
\(\chi_{875}(89,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{150}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{49}{50}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{23}{75}\right)\)
\(\chi_{875}(94,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{150}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{17}{50}\right)\) \(e\left(\frac{47}{50}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{19}{75}\right)\)
\(\chi_{875}(129,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{150}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{33}{50}\right)\) \(e\left(\frac{3}{50}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{31}{75}\right)\)
\(\chi_{875}(159,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{150}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{11}{50}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{47}{75}\right)\)
\(\chi_{875}(164,\cdot)\) \(-1\) \(1\) \(e\left(\frac{119}{150}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{9}{50}\right)\) \(e\left(\frac{19}{50}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{13}{75}\right)\)
\(\chi_{875}(194,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{150}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{14}{75}\right)\)
\(\chi_{875}(229,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{150}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{13}{50}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{26}{75}\right)\)
\(\chi_{875}(234,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{150}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{31}{50}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{37}{75}\right)\)
\(\chi_{875}(264,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{150}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{19}{50}\right)\) \(e\left(\frac{29}{50}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{8}{75}\right)\)
\(\chi_{875}(269,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{150}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{47}{50}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{4}{75}\right)\)
\(\chi_{875}(304,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{150}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{13}{50}\right)\) \(e\left(\frac{33}{50}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{16}{75}\right)\)
\(\chi_{875}(334,\cdot)\) \(-1\) \(1\) \(e\left(\frac{91}{150}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{32}{75}\right)\)
\(\chi_{875}(339,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{150}\right)\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{49}{50}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{73}{75}\right)\)
\(\chi_{875}(369,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{150}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{74}{75}\right)\)
\(\chi_{875}(404,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{150}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{11}{75}\right)\)
\(\chi_{875}(409,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{150}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{11}{50}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{22}{75}\right)\)
\(\chi_{875}(439,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{150}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{49}{50}\right)\) \(e\left(\frac{9}{50}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{68}{75}\right)\)
\(\chi_{875}(444,\cdot)\) \(-1\) \(1\) \(e\left(\frac{107}{150}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{64}{75}\right)\)
\(\chi_{875}(479,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{150}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{13}{50}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{1}{75}\right)\)
\(\chi_{875}(509,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{150}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{31}{50}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{17}{75}\right)\)
\(\chi_{875}(514,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{150}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{19}{50}\right)\) \(e\left(\frac{29}{50}\right)\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{58}{75}\right)\)
\(\chi_{875}(544,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{150}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{17}{50}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{59}{75}\right)\)
\(\chi_{875}(579,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{150}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{3}{50}\right)\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{71}{75}\right)\)
\(\chi_{875}(584,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{150}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{7}{75}\right)\)
\(\chi_{875}(614,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{150}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{29}{50}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{53}{75}\right)\)
\(\chi_{875}(619,\cdot)\) \(-1\) \(1\) \(e\left(\frac{137}{150}\right)\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{56}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{49}{75}\right)\)
\(\chi_{875}(654,\cdot)\) \(-1\) \(1\) \(e\left(\frac{143}{150}\right)\) \(e\left(\frac{38}{75}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{61}{75}\right)\)
\(\chi_{875}(684,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{150}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{11}{50}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{17}{75}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{2}{75}\right)\)