Properties

Label 875.12
Modulus $875$
Conductor $875$
Order $300$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(300)) M = H._module chi = DirichletCharacter(H, M([27,250]))
 
Copy content pari:[g,chi] = znchar(Mod(12,875))
 

Basic properties

Modulus: \(875\)
Conductor: \(875\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(300\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 875.bj

\(\chi_{875}(3,\cdot)\) \(\chi_{875}(12,\cdot)\) \(\chi_{875}(17,\cdot)\) \(\chi_{875}(33,\cdot)\) \(\chi_{875}(38,\cdot)\) \(\chi_{875}(47,\cdot)\) \(\chi_{875}(52,\cdot)\) \(\chi_{875}(73,\cdot)\) \(\chi_{875}(87,\cdot)\) \(\chi_{875}(103,\cdot)\) \(\chi_{875}(108,\cdot)\) \(\chi_{875}(117,\cdot)\) \(\chi_{875}(122,\cdot)\) \(\chi_{875}(138,\cdot)\) \(\chi_{875}(152,\cdot)\) \(\chi_{875}(173,\cdot)\) \(\chi_{875}(178,\cdot)\) \(\chi_{875}(187,\cdot)\) \(\chi_{875}(192,\cdot)\) \(\chi_{875}(208,\cdot)\) \(\chi_{875}(213,\cdot)\) \(\chi_{875}(222,\cdot)\) \(\chi_{875}(227,\cdot)\) \(\chi_{875}(248,\cdot)\) \(\chi_{875}(262,\cdot)\) \(\chi_{875}(278,\cdot)\) \(\chi_{875}(283,\cdot)\) \(\chi_{875}(292,\cdot)\) \(\chi_{875}(297,\cdot)\) \(\chi_{875}(313,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{300})$
Fixed field: Number field defined by a degree 300 polynomial (not computed)

Values on generators

\((127,626)\) → \((e\left(\frac{9}{100}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 875 }(12, a) \) \(1\)\(1\)\(e\left(\frac{227}{300}\right)\)\(e\left(\frac{139}{300}\right)\)\(e\left(\frac{77}{150}\right)\)\(e\left(\frac{11}{50}\right)\)\(e\left(\frac{27}{100}\right)\)\(e\left(\frac{139}{150}\right)\)\(e\left(\frac{13}{75}\right)\)\(e\left(\frac{293}{300}\right)\)\(e\left(\frac{1}{100}\right)\)\(e\left(\frac{2}{75}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 875 }(12,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 875 }(12,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 875 }(12,·),\chi_{ 875 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 875 }(12,·)) \;\) at \(\; a,b = \) e.g. 1,2