Properties

Label 8732.z
Modulus $8732$
Conductor $8732$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,8,9])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(1415,8732)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8732\)
Conductor: \(8732\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{8732}(1415,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{8732}(3067,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{8732}(4955,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{8732}(5899,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{8732}(6371,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{8732}(7079,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\)