sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8732, base_ring=CyclotomicField(522))
M = H._module
chi = DirichletCharacter(H, M([261,116,243]))
pari:[g,chi] = znchar(Mod(811,8732))
Modulus: | \(8732\) | |
Conductor: | \(8732\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(522\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8732}(83,\cdot)\)
\(\chi_{8732}(155,\cdot)\)
\(\chi_{8732}(219,\cdot)\)
\(\chi_{8732}(231,\cdot)\)
\(\chi_{8732}(275,\cdot)\)
\(\chi_{8732}(303,\cdot)\)
\(\chi_{8732}(367,\cdot)\)
\(\chi_{8732}(419,\cdot)\)
\(\chi_{8732}(423,\cdot)\)
\(\chi_{8732}(451,\cdot)\)
\(\chi_{8732}(515,\cdot)\)
\(\chi_{8732}(527,\cdot)\)
\(\chi_{8732}(571,\cdot)\)
\(\chi_{8732}(663,\cdot)\)
\(\chi_{8732}(699,\cdot)\)
\(\chi_{8732}(719,\cdot)\)
\(\chi_{8732}(747,\cdot)\)
\(\chi_{8732}(811,\cdot)\)
\(\chi_{8732}(823,\cdot)\)
\(\chi_{8732}(863,\cdot)\)
\(\chi_{8732}(895,\cdot)\)
\(\chi_{8732}(1011,\cdot)\)
\(\chi_{8732}(1043,\cdot)\)
\(\chi_{8732}(1159,\cdot)\)
\(\chi_{8732}(1163,\cdot)\)
\(\chi_{8732}(1191,\cdot)\)
\(\chi_{8732}(1291,\cdot)\)
\(\chi_{8732}(1311,\cdot)\)
\(\chi_{8732}(1439,\cdot)\)
\(\chi_{8732}(1455,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4367,1889,297)\) → \((-1,e\left(\frac{2}{9}\right),e\left(\frac{27}{58}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 8732 }(811, a) \) |
\(1\) | \(1\) | \(e\left(\frac{289}{522}\right)\) | \(e\left(\frac{236}{261}\right)\) | \(e\left(\frac{517}{522}\right)\) | \(e\left(\frac{28}{261}\right)\) | \(e\left(\frac{70}{87}\right)\) | \(e\left(\frac{205}{522}\right)\) | \(e\left(\frac{239}{522}\right)\) | \(e\left(\frac{46}{261}\right)\) | \(e\left(\frac{505}{522}\right)\) | \(e\left(\frac{142}{261}\right)\) |
sage:chi.jacobi_sum(n)