Properties

Label 8732.4393
Modulus $8732$
Conductor $2183$
Order $174$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(174)) M = H._module chi = DirichletCharacter(H, M([0,29,102]))
 
Copy content pari:[g,chi] = znchar(Mod(4393,8732))
 

Basic properties

Modulus: \(8732\)
Conductor: \(2183\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(174\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2183}(27,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8732.cb

\(\chi_{8732}(85,\cdot)\) \(\chi_{8732}(381,\cdot)\) \(\chi_{8732}(529,\cdot)\) \(\chi_{8732}(677,\cdot)\) \(\chi_{8732}(841,\cdot)\) \(\chi_{8732}(973,\cdot)\) \(\chi_{8732}(989,\cdot)\) \(\chi_{8732}(1137,\cdot)\) \(\chi_{8732}(1285,\cdot)\) \(\chi_{8732}(1433,\cdot)\) \(\chi_{8732}(1877,\cdot)\) \(\chi_{8732}(2009,\cdot)\) \(\chi_{8732}(2025,\cdot)\) \(\chi_{8732}(2173,\cdot)\) \(\chi_{8732}(2305,\cdot)\) \(\chi_{8732}(2321,\cdot)\) \(\chi_{8732}(2601,\cdot)\) \(\chi_{8732}(2617,\cdot)\) \(\chi_{8732}(2749,\cdot)\) \(\chi_{8732}(2765,\cdot)\) \(\chi_{8732}(2913,\cdot)\) \(\chi_{8732}(3045,\cdot)\) \(\chi_{8732}(3193,\cdot)\) \(\chi_{8732}(3357,\cdot)\) \(\chi_{8732}(3785,\cdot)\) \(\chi_{8732}(3801,\cdot)\) \(\chi_{8732}(4097,\cdot)\) \(\chi_{8732}(4393,\cdot)\) \(\chi_{8732}(4525,\cdot)\) \(\chi_{8732}(4541,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{87})$
Fixed field: Number field defined by a degree 174 polynomial (not computed)

Values on generators

\((4367,1889,297)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{17}{29}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 8732 }(4393, a) \) \(1\)\(1\)\(e\left(\frac{56}{87}\right)\)\(e\left(\frac{61}{174}\right)\)\(e\left(\frac{77}{87}\right)\)\(e\left(\frac{25}{87}\right)\)\(e\left(\frac{19}{29}\right)\)\(e\left(\frac{37}{174}\right)\)\(e\left(\frac{173}{174}\right)\)\(e\left(\frac{107}{174}\right)\)\(e\left(\frac{19}{174}\right)\)\(e\left(\frac{46}{87}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8732 }(4393,a) \;\) at \(\;a = \) e.g. 2