sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8732, base_ring=CyclotomicField(174))
M = H._module
chi = DirichletCharacter(H, M([87,116,3]))
pari:[g,chi] = znchar(Mod(4191,8732))
Modulus: | \(8732\) | |
Conductor: | \(8732\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(174\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8732}(47,\cdot)\)
\(\chi_{8732}(195,\cdot)\)
\(\chi_{8732}(211,\cdot)\)
\(\chi_{8732}(655,\cdot)\)
\(\chi_{8732}(935,\cdot)\)
\(\chi_{8732}(1099,\cdot)\)
\(\chi_{8732}(1247,\cdot)\)
\(\chi_{8732}(1395,\cdot)\)
\(\chi_{8732}(1527,\cdot)\)
\(\chi_{8732}(1675,\cdot)\)
\(\chi_{8732}(1691,\cdot)\)
\(\chi_{8732}(1839,\cdot)\)
\(\chi_{8732}(1971,\cdot)\)
\(\chi_{8732}(1987,\cdot)\)
\(\chi_{8732}(2119,\cdot)\)
\(\chi_{8732}(2135,\cdot)\)
\(\chi_{8732}(2415,\cdot)\)
\(\chi_{8732}(2579,\cdot)\)
\(\chi_{8732}(2711,\cdot)\)
\(\chi_{8732}(2727,\cdot)\)
\(\chi_{8732}(2875,\cdot)\)
\(\chi_{8732}(3023,\cdot)\)
\(\chi_{8732}(3171,\cdot)\)
\(\chi_{8732}(3747,\cdot)\)
\(\chi_{8732}(4043,\cdot)\)
\(\chi_{8732}(4059,\cdot)\)
\(\chi_{8732}(4191,\cdot)\)
\(\chi_{8732}(4207,\cdot)\)
\(\chi_{8732}(4339,\cdot)\)
\(\chi_{8732}(4635,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4367,1889,297)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{58}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 8732 }(4191, a) \) |
\(1\) | \(1\) | \(e\left(\frac{121}{174}\right)\) | \(e\left(\frac{38}{87}\right)\) | \(e\left(\frac{25}{174}\right)\) | \(e\left(\frac{34}{87}\right)\) | \(e\left(\frac{27}{29}\right)\) | \(e\left(\frac{19}{174}\right)\) | \(e\left(\frac{23}{174}\right)\) | \(e\left(\frac{31}{87}\right)\) | \(e\left(\frac{85}{174}\right)\) | \(e\left(\frac{73}{87}\right)\) |
sage:chi.jacobi_sum(n)