Properties

Label 8732.3283
Modulus $8732$
Conductor $8732$
Order $174$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8732, base_ring=CyclotomicField(174)) M = H._module chi = DirichletCharacter(H, M([87,29,117]))
 
Copy content pari:[g,chi] = znchar(Mod(3283,8732))
 

Basic properties

Modulus: \(8732\)
Conductor: \(8732\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(174\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8732.bx

\(\chi_{8732}(11,\cdot)\) \(\chi_{8732}(455,\cdot)\) \(\chi_{8732}(603,\cdot)\) \(\chi_{8732}(751,\cdot)\) \(\chi_{8732}(899,\cdot)\) \(\chi_{8732}(915,\cdot)\) \(\chi_{8732}(1047,\cdot)\) \(\chi_{8732}(1211,\cdot)\) \(\chi_{8732}(1359,\cdot)\) \(\chi_{8732}(1507,\cdot)\) \(\chi_{8732}(1803,\cdot)\) \(\chi_{8732}(1935,\cdot)\) \(\chi_{8732}(2083,\cdot)\) \(\chi_{8732}(2099,\cdot)\) \(\chi_{8732}(2543,\cdot)\) \(\chi_{8732}(2823,\cdot)\) \(\chi_{8732}(2987,\cdot)\) \(\chi_{8732}(3135,\cdot)\) \(\chi_{8732}(3283,\cdot)\) \(\chi_{8732}(3415,\cdot)\) \(\chi_{8732}(3563,\cdot)\) \(\chi_{8732}(3579,\cdot)\) \(\chi_{8732}(3727,\cdot)\) \(\chi_{8732}(3859,\cdot)\) \(\chi_{8732}(3875,\cdot)\) \(\chi_{8732}(4007,\cdot)\) \(\chi_{8732}(4023,\cdot)\) \(\chi_{8732}(4303,\cdot)\) \(\chi_{8732}(4467,\cdot)\) \(\chi_{8732}(4599,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{87})$
Fixed field: Number field defined by a degree 174 polynomial (not computed)

Values on generators

\((4367,1889,297)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{39}{58}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 8732 }(3283, a) \) \(1\)\(1\)\(e\left(\frac{79}{174}\right)\)\(e\left(\frac{151}{174}\right)\)\(e\left(\frac{163}{174}\right)\)\(e\left(\frac{79}{87}\right)\)\(e\left(\frac{9}{29}\right)\)\(e\left(\frac{8}{87}\right)\)\(e\left(\frac{28}{87}\right)\)\(e\left(\frac{11}{174}\right)\)\(e\left(\frac{77}{87}\right)\)\(e\left(\frac{34}{87}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8732 }(3283,a) \;\) at \(\;a = \) e.g. 2