Properties

Label 8712.7825
Modulus $8712$
Conductor $99$
Order $15$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8712, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,0,10,6]))
 
Copy content pari:[g,chi] = znchar(Mod(7825,8712))
 

Basic properties

Modulus: \(8712\)
Conductor: \(99\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{99}(4,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8712.bx

\(\chi_{8712}(2689,\cdot)\) \(\chi_{8712}(4849,\cdot)\) \(\chi_{8712}(4921,\cdot)\) \(\chi_{8712}(5569,\cdot)\) \(\chi_{8712}(5593,\cdot)\) \(\chi_{8712}(7753,\cdot)\) \(\chi_{8712}(7825,\cdot)\) \(\chi_{8712}(8473,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 15.15.10943023107606534329121.1

Values on generators

\((6535,4357,1937,5689)\) → \((1,1,e\left(\frac{1}{3}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8712 }(7825, a) \) \(1\)\(1\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8712 }(7825,a) \;\) at \(\;a = \) e.g. 2