sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8712, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([3,3,2,3]))
pari:[g,chi] = znchar(Mod(5323,8712))
\(\chi_{8712}(2419,\cdot)\)
\(\chi_{8712}(5323,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6535,4357,1937,5689)\) → \((-1,-1,e\left(\frac{1}{3}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 8712 }(5323, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)