sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8712, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([165,165,110,201]))
pari:[g,chi] = znchar(Mod(139,8712))
| Modulus: | \(8712\) | |
| Conductor: | \(8712\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8712}(139,\cdot)\)
\(\chi_{8712}(211,\cdot)\)
\(\chi_{8712}(259,\cdot)\)
\(\chi_{8712}(283,\cdot)\)
\(\chi_{8712}(547,\cdot)\)
\(\chi_{8712}(787,\cdot)\)
\(\chi_{8712}(931,\cdot)\)
\(\chi_{8712}(1003,\cdot)\)
\(\chi_{8712}(1051,\cdot)\)
\(\chi_{8712}(1075,\cdot)\)
\(\chi_{8712}(1195,\cdot)\)
\(\chi_{8712}(1267,\cdot)\)
\(\chi_{8712}(1339,\cdot)\)
\(\chi_{8712}(1579,\cdot)\)
\(\chi_{8712}(1723,\cdot)\)
\(\chi_{8712}(1795,\cdot)\)
\(\chi_{8712}(1843,\cdot)\)
\(\chi_{8712}(1867,\cdot)\)
\(\chi_{8712}(1987,\cdot)\)
\(\chi_{8712}(2059,\cdot)\)
\(\chi_{8712}(2131,\cdot)\)
\(\chi_{8712}(2371,\cdot)\)
\(\chi_{8712}(2515,\cdot)\)
\(\chi_{8712}(2587,\cdot)\)
\(\chi_{8712}(2779,\cdot)\)
\(\chi_{8712}(2851,\cdot)\)
\(\chi_{8712}(2923,\cdot)\)
\(\chi_{8712}(3163,\cdot)\)
\(\chi_{8712}(3427,\cdot)\)
\(\chi_{8712}(3451,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6535,4357,1937,5689)\) → \((-1,-1,e\left(\frac{1}{3}\right),e\left(\frac{67}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 8712 }(139, a) \) |
\(1\) | \(1\) | \(e\left(\frac{79}{330}\right)\) | \(e\left(\frac{16}{165}\right)\) | \(e\left(\frac{113}{165}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{61}{110}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{79}{165}\right)\) | \(e\left(\frac{31}{165}\right)\) | \(e\left(\frac{181}{330}\right)\) | \(e\left(\frac{37}{110}\right)\) |
sage:chi.jacobi_sum(n)