sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(867, base_ring=CyclotomicField(34))
M = H._module
chi = DirichletCharacter(H, M([17,5]))
pari:[g,chi] = znchar(Mod(152,867))
Modulus: | \(867\) | |
Conductor: | \(867\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(34\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{867}(50,\cdot)\)
\(\chi_{867}(101,\cdot)\)
\(\chi_{867}(152,\cdot)\)
\(\chi_{867}(203,\cdot)\)
\(\chi_{867}(254,\cdot)\)
\(\chi_{867}(305,\cdot)\)
\(\chi_{867}(356,\cdot)\)
\(\chi_{867}(407,\cdot)\)
\(\chi_{867}(458,\cdot)\)
\(\chi_{867}(509,\cdot)\)
\(\chi_{867}(560,\cdot)\)
\(\chi_{867}(611,\cdot)\)
\(\chi_{867}(662,\cdot)\)
\(\chi_{867}(713,\cdot)\)
\(\chi_{867}(764,\cdot)\)
\(\chi_{867}(815,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((290,292)\) → \((-1,e\left(\frac{5}{34}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 867 }(152, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{15}{17}\right)\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{15}{17}\right)\) | \(e\left(\frac{14}{17}\right)\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{13}{17}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)