sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8664, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([0,171,171,199]))
pari:[g,chi] = znchar(Mod(173,8664))
| Modulus: | \(8664\) | |
| Conductor: | \(8664\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(342\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8664}(29,\cdot)\)
\(\chi_{8664}(53,\cdot)\)
\(\chi_{8664}(173,\cdot)\)
\(\chi_{8664}(269,\cdot)\)
\(\chi_{8664}(317,\cdot)\)
\(\chi_{8664}(413,\cdot)\)
\(\chi_{8664}(485,\cdot)\)
\(\chi_{8664}(509,\cdot)\)
\(\chi_{8664}(629,\cdot)\)
\(\chi_{8664}(725,\cdot)\)
\(\chi_{8664}(773,\cdot)\)
\(\chi_{8664}(869,\cdot)\)
\(\chi_{8664}(941,\cdot)\)
\(\chi_{8664}(965,\cdot)\)
\(\chi_{8664}(1085,\cdot)\)
\(\chi_{8664}(1181,\cdot)\)
\(\chi_{8664}(1229,\cdot)\)
\(\chi_{8664}(1325,\cdot)\)
\(\chi_{8664}(1397,\cdot)\)
\(\chi_{8664}(1421,\cdot)\)
\(\chi_{8664}(1541,\cdot)\)
\(\chi_{8664}(1637,\cdot)\)
\(\chi_{8664}(1685,\cdot)\)
\(\chi_{8664}(1781,\cdot)\)
\(\chi_{8664}(1853,\cdot)\)
\(\chi_{8664}(1877,\cdot)\)
\(\chi_{8664}(1997,\cdot)\)
\(\chi_{8664}(2093,\cdot)\)
\(\chi_{8664}(2141,\cdot)\)
\(\chi_{8664}(2237,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2167,4333,5777,8305)\) → \((1,-1,-1,e\left(\frac{199}{342}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 8664 }(173, a) \) |
\(1\) | \(1\) | \(e\left(\frac{170}{171}\right)\) | \(e\left(\frac{16}{57}\right)\) | \(e\left(\frac{20}{57}\right)\) | \(e\left(\frac{160}{171}\right)\) | \(e\left(\frac{1}{342}\right)\) | \(e\left(\frac{155}{342}\right)\) | \(e\left(\frac{169}{171}\right)\) | \(e\left(\frac{305}{342}\right)\) | \(e\left(\frac{35}{114}\right)\) | \(e\left(\frac{47}{171}\right)\) |
sage:chi.jacobi_sum(n)