Properties

Label 8568.5483
Modulus $8568$
Conductor $8568$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8568, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,12,4,8,3]))
 
Copy content pari:[g,chi] = znchar(Mod(5483,8568))
 

Basic properties

Modulus: \(8568\)
Conductor: \(8568\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8568.ll

\(\chi_{8568}(4979,\cdot)\) \(\chi_{8568}(5387,\cdot)\) \(\chi_{8568}(5483,\cdot)\) \(\chi_{8568}(5891,\cdot)\) \(\chi_{8568}(6995,\cdot)\) \(\chi_{8568}(7403,\cdot)\) \(\chi_{8568}(7499,\cdot)\) \(\chi_{8568}(7907,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((2143,4285,3809,6121,5545)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{1}{3}\right),e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 8568 }(5483, a) \) \(1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{8}\right)\)\(i\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{5}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8568 }(5483,a) \;\) at \(\;a = \) e.g. 2