Properties

Label 85600.8191
Modulus $85600$
Conductor $10700$
Order $530$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(85600, base_ring=CyclotomicField(530)) M = H._module chi = DirichletCharacter(H, M([265,0,106,105]))
 
Copy content pari:[g,chi] = znchar(Mod(8191,85600))
 

Basic properties

Modulus: \(85600\)
Conductor: \(10700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(530\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{10700}(8191,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 85600.go

\(\chi_{85600}(31,\cdot)\) \(\chi_{85600}(191,\cdot)\) \(\chi_{85600}(831,\cdot)\) \(\chi_{85600}(991,\cdot)\) \(\chi_{85600}(1471,\cdot)\) \(\chi_{85600}(1631,\cdot)\) \(\chi_{85600}(2111,\cdot)\) \(\chi_{85600}(2271,\cdot)\) \(\chi_{85600}(2431,\cdot)\) \(\chi_{85600}(2911,\cdot)\) \(\chi_{85600}(3231,\cdot)\) \(\chi_{85600}(3391,\cdot)\) \(\chi_{85600}(3711,\cdot)\) \(\chi_{85600}(4031,\cdot)\) \(\chi_{85600}(4191,\cdot)\) \(\chi_{85600}(4511,\cdot)\) \(\chi_{85600}(4671,\cdot)\) \(\chi_{85600}(5311,\cdot)\) \(\chi_{85600}(5631,\cdot)\) \(\chi_{85600}(6271,\cdot)\) \(\chi_{85600}(6911,\cdot)\) \(\chi_{85600}(7391,\cdot)\) \(\chi_{85600}(7711,\cdot)\) \(\chi_{85600}(7871,\cdot)\) \(\chi_{85600}(8031,\cdot)\) \(\chi_{85600}(8191,\cdot)\) \(\chi_{85600}(8511,\cdot)\) \(\chi_{85600}(9311,\cdot)\) \(\chi_{85600}(9471,\cdot)\) \(\chi_{85600}(9791,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{265})$
Fixed field: Number field defined by a degree 530 polynomial (not computed)

Values on generators

\((26751,32101,82177,16801)\) → \((-1,1,e\left(\frac{1}{5}\right),e\left(\frac{21}{106}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 85600 }(8191, a) \) \(1\)\(1\)\(e\left(\frac{407}{530}\right)\)\(e\left(\frac{1}{53}\right)\)\(e\left(\frac{142}{265}\right)\)\(e\left(\frac{31}{530}\right)\)\(e\left(\frac{152}{265}\right)\)\(e\left(\frac{183}{530}\right)\)\(e\left(\frac{293}{530}\right)\)\(e\left(\frac{417}{530}\right)\)\(e\left(\frac{521}{530}\right)\)\(e\left(\frac{161}{530}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 85600 }(8191,a) \;\) at \(\;a = \) e.g. 2