Properties

Label 8550.gr
Modulus $8550$
Conductor $475$
Order $90$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8550, base_ring=CyclotomicField(90)) M = H._module chi = DirichletCharacter(H, M([0,63,35])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(109,8550)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8550\)
Conductor: \(475\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(90\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 475.bh
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{8550}(109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{8550}(469,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{8550}(1009,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{8550}(1459,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{8550}(1819,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{8550}(2179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{8550}(2359,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{8550}(2719,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{8550}(3169,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{8550}(3259,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{8550}(3529,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{8550}(3889,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{8550}(4069,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{8550}(4429,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{8550}(4879,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{8550}(4969,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{8550}(5239,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{8550}(5779,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{8550}(6139,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{8550}(6589,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{8550}(6679,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{8550}(7309,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{8550}(7489,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{8550}(8389,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{11}{18}\right)\)