sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8464, base_ring=CyclotomicField(1012))
M = H._module
chi = DirichletCharacter(H, M([0,253,864]))
pari:[g,chi] = znchar(Mod(565,8464))
Modulus: | \(8464\) | |
Conductor: | \(8464\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(1012\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8464}(13,\cdot)\)
\(\chi_{8464}(29,\cdot)\)
\(\chi_{8464}(77,\cdot)\)
\(\chi_{8464}(85,\cdot)\)
\(\chi_{8464}(101,\cdot)\)
\(\chi_{8464}(117,\cdot)\)
\(\chi_{8464}(133,\cdot)\)
\(\chi_{8464}(141,\cdot)\)
\(\chi_{8464}(165,\cdot)\)
\(\chi_{8464}(173,\cdot)\)
\(\chi_{8464}(197,\cdot)\)
\(\chi_{8464}(213,\cdot)\)
\(\chi_{8464}(261,\cdot)\)
\(\chi_{8464}(269,\cdot)\)
\(\chi_{8464}(285,\cdot)\)
\(\chi_{8464}(301,\cdot)\)
\(\chi_{8464}(317,\cdot)\)
\(\chi_{8464}(325,\cdot)\)
\(\chi_{8464}(349,\cdot)\)
\(\chi_{8464}(357,\cdot)\)
\(\chi_{8464}(381,\cdot)\)
\(\chi_{8464}(397,\cdot)\)
\(\chi_{8464}(445,\cdot)\)
\(\chi_{8464}(453,\cdot)\)
\(\chi_{8464}(469,\cdot)\)
\(\chi_{8464}(485,\cdot)\)
\(\chi_{8464}(509,\cdot)\)
\(\chi_{8464}(533,\cdot)\)
\(\chi_{8464}(541,\cdot)\)
\(\chi_{8464}(565,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7407,2117,6353)\) → \((1,i,e\left(\frac{216}{253}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 8464 }(565, a) \) |
\(1\) | \(1\) | \(e\left(\frac{415}{1012}\right)\) | \(e\left(\frac{105}{1012}\right)\) | \(e\left(\frac{321}{506}\right)\) | \(e\left(\frac{415}{506}\right)\) | \(e\left(\frac{593}{1012}\right)\) | \(e\left(\frac{975}{1012}\right)\) | \(e\left(\frac{130}{253}\right)\) | \(e\left(\frac{192}{253}\right)\) | \(e\left(\frac{783}{1012}\right)\) | \(e\left(\frac{45}{1012}\right)\) |
sage:chi.jacobi_sum(n)