Properties

Label 8450.cf
Modulus $8450$
Conductor $4225$
Order $130$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(130)) M = H._module chi = DirichletCharacter(H, M([52,105])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(181,8450)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8450\)
Conductor: \(4225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(130\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 4225.ce
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{65})$
Fixed field: Number field defined by a degree 130 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{8450}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{49}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{7}{65}\right)\)
\(\chi_{8450}(311,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{36}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{123}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{64}{65}\right)\)
\(\chi_{8450}(441,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{56}{65}\right)\)
\(\chi_{8450}(571,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{73}{130}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{48}{65}\right)\)
\(\chi_{8450}(831,\cdot)\) \(1\) \(1\) \(e\left(\frac{42}{65}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{32}{65}\right)\)
\(\chi_{8450}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{69}{130}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{103}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{24}{65}\right)\)
\(\chi_{8450}(1091,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{42}{65}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{47}{130}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{16}{65}\right)\)
\(\chi_{8450}(1221,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{121}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{8}{65}\right)\)
\(\chi_{8450}(1481,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{57}{65}\right)\)
\(\chi_{8450}(1611,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{83}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{49}{65}\right)\)
\(\chi_{8450}(1741,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{41}{65}\right)\)
\(\chi_{8450}(1871,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{103}{130}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{101}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{33}{65}\right)\)
\(\chi_{8450}(2131,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{17}{65}\right)\)
\(\chi_{8450}(2261,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{99}{130}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{63}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{9}{65}\right)\)
\(\chi_{8450}(2391,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{130}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{1}{65}\right)\)
\(\chi_{8450}(2521,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{53}{130}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{58}{65}\right)\)
\(\chi_{8450}(2781,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{7}{130}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{99}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{42}{65}\right)\)
\(\chi_{8450}(2911,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{49}{130}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{43}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{34}{65}\right)\)
\(\chi_{8450}(3171,\cdot)\) \(1\) \(1\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{18}{65}\right)\)
\(\chi_{8450}(3431,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{54}{65}\right)\) \(e\left(\frac{87}{130}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{2}{65}\right)\)
\(\chi_{8450}(3561,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{65}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{129}{130}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{59}{65}\right)\)
\(\chi_{8450}(3691,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{49}{65}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{51}{65}\right)\)
\(\chi_{8450}(3821,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{83}{130}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{43}{65}\right)\)
\(\chi_{8450}(4081,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{59}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{27}{65}\right)\)
\(\chi_{8450}(4211,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{19}{65}\right)\)
\(\chi_{8450}(4341,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{121}{130}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{11}{65}\right)\)
\(\chi_{8450}(4471,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{21}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{3}{65}\right)\)
\(\chi_{8450}(4861,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{29}{130}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{113}{130}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{44}{65}\right)\)
\(\chi_{8450}(4991,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{36}{65}\right)\)
\(\chi_{8450}(5121,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{113}{130}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{28}{65}\right)\)
\(\chi_{8450}(5381,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{12}{65}\right)\)