Properties

Label 8450.bm
Modulus $8450$
Conductor $169$
Order $39$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([0,16])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(451,8450)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8450\)
Conductor: \(169\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(39\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 169.i
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 39 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{8450}(451,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{8}{39}\right)\)
\(\chi_{8450}(601,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{16}{39}\right)\)
\(\chi_{8450}(1101,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{2}{39}\right)\)
\(\chi_{8450}(1251,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{37}{39}\right)\)
\(\chi_{8450}(1751,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{8450}(1901,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{8450}(2401,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{29}{39}\right)\)
\(\chi_{8450}(2551,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{8450}(3051,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{8450}(3201,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{8450}(3701,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{8450}(3851,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{8450}(4351,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{8450}(4501,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{25}{39}\right)\)
\(\chi_{8450}(5001,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{8450}(5151,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{7}{39}\right)\)
\(\chi_{8450}(5651,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{38}{39}\right)\)
\(\chi_{8450}(5801,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{8450}(6301,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{8450}(6451,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{8450}(7101,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{31}{39}\right)\)
\(\chi_{8450}(7601,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{8450}(8251,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{8450}(8401,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{34}{39}\right)\)