Properties

Label 8450.791
Modulus $8450$
Conductor $4225$
Order $780$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(780)) M = H._module chi = DirichletCharacter(H, M([156,695]))
 
Copy content pari:[g,chi] = znchar(Mod(791,8450))
 

Basic properties

Modulus: \(8450\)
Conductor: \(4225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(780\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4225}(791,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8450.cw

\(\chi_{8450}(11,\cdot)\) \(\chi_{8450}(41,\cdot)\) \(\chi_{8450}(71,\cdot)\) \(\chi_{8450}(111,\cdot)\) \(\chi_{8450}(141,\cdot)\) \(\chi_{8450}(171,\cdot)\) \(\chi_{8450}(241,\cdot)\) \(\chi_{8450}(271,\cdot)\) \(\chi_{8450}(331,\cdot)\) \(\chi_{8450}(371,\cdot)\) \(\chi_{8450}(431,\cdot)\) \(\chi_{8450}(461,\cdot)\) \(\chi_{8450}(531,\cdot)\) \(\chi_{8450}(561,\cdot)\) \(\chi_{8450}(591,\cdot)\) \(\chi_{8450}(631,\cdot)\) \(\chi_{8450}(661,\cdot)\) \(\chi_{8450}(691,\cdot)\) \(\chi_{8450}(721,\cdot)\) \(\chi_{8450}(761,\cdot)\) \(\chi_{8450}(791,\cdot)\) \(\chi_{8450}(821,\cdot)\) \(\chi_{8450}(891,\cdot)\) \(\chi_{8450}(921,\cdot)\) \(\chi_{8450}(981,\cdot)\) \(\chi_{8450}(1021,\cdot)\) \(\chi_{8450}(1081,\cdot)\) \(\chi_{8450}(1111,\cdot)\) \(\chi_{8450}(1181,\cdot)\) \(\chi_{8450}(1211,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{780})$
Fixed field: Number field defined by a degree 780 polynomial (not computed)

Values on generators

\((677,3551)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{139}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8450 }(791, a) \) \(-1\)\(1\)\(e\left(\frac{173}{195}\right)\)\(e\left(\frac{53}{156}\right)\)\(e\left(\frac{151}{195}\right)\)\(e\left(\frac{761}{780}\right)\)\(e\left(\frac{269}{390}\right)\)\(e\left(\frac{31}{60}\right)\)\(e\left(\frac{59}{260}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{43}{65}\right)\)\(e\left(\frac{8}{195}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8450 }(791,a) \;\) at \(\;a = \) e.g. 2