Properties

Label 8450.2939
Modulus $8450$
Conductor $4225$
Order $130$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(130)) M = H._module chi = DirichletCharacter(H, M([39,60]))
 
Copy content pari:[g,chi] = znchar(Mod(2939,8450))
 

Basic properties

Modulus: \(8450\)
Conductor: \(4225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(130\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4225}(2939,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8450.ce

\(\chi_{8450}(79,\cdot)\) \(\chi_{8450}(209,\cdot)\) \(\chi_{8450}(469,\cdot)\) \(\chi_{8450}(729,\cdot)\) \(\chi_{8450}(859,\cdot)\) \(\chi_{8450}(989,\cdot)\) \(\chi_{8450}(1119,\cdot)\) \(\chi_{8450}(1379,\cdot)\) \(\chi_{8450}(1509,\cdot)\) \(\chi_{8450}(1639,\cdot)\) \(\chi_{8450}(1769,\cdot)\) \(\chi_{8450}(2159,\cdot)\) \(\chi_{8450}(2289,\cdot)\) \(\chi_{8450}(2419,\cdot)\) \(\chi_{8450}(2679,\cdot)\) \(\chi_{8450}(2809,\cdot)\) \(\chi_{8450}(2939,\cdot)\) \(\chi_{8450}(3069,\cdot)\) \(\chi_{8450}(3329,\cdot)\) \(\chi_{8450}(3459,\cdot)\) \(\chi_{8450}(3589,\cdot)\) \(\chi_{8450}(3979,\cdot)\) \(\chi_{8450}(4109,\cdot)\) \(\chi_{8450}(4239,\cdot)\) \(\chi_{8450}(4369,\cdot)\) \(\chi_{8450}(4629,\cdot)\) \(\chi_{8450}(4759,\cdot)\) \(\chi_{8450}(4889,\cdot)\) \(\chi_{8450}(5019,\cdot)\) \(\chi_{8450}(5279,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{65})$
Fixed field: Number field defined by a degree 130 polynomial (not computed)

Values on generators

\((677,3551)\) → \((e\left(\frac{3}{10}\right),e\left(\frac{6}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8450 }(2939, a) \) \(1\)\(1\)\(e\left(\frac{43}{130}\right)\)\(e\left(\frac{23}{26}\right)\)\(e\left(\frac{43}{65}\right)\)\(e\left(\frac{22}{65}\right)\)\(e\left(\frac{37}{130}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{14}{65}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{129}{130}\right)\)\(e\left(\frac{4}{65}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8450 }(2939,a) \;\) at \(\;a = \) e.g. 2