Properties

Label 8450.1301
Modulus $8450$
Conductor $169$
Order $13$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([0,6]))
 
Copy content pari:[g,chi] = znchar(Mod(1301,8450))
 

Basic properties

Modulus: \(8450\)
Conductor: \(169\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(13\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(118,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8450.y

\(\chi_{8450}(651,\cdot)\) \(\chi_{8450}(1301,\cdot)\) \(\chi_{8450}(1951,\cdot)\) \(\chi_{8450}(2601,\cdot)\) \(\chi_{8450}(3251,\cdot)\) \(\chi_{8450}(3901,\cdot)\) \(\chi_{8450}(4551,\cdot)\) \(\chi_{8450}(5201,\cdot)\) \(\chi_{8450}(5851,\cdot)\) \(\chi_{8450}(6501,\cdot)\) \(\chi_{8450}(7151,\cdot)\) \(\chi_{8450}(7801,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 13.13.542800770374370512771595361.1

Values on generators

\((677,3551)\) → \((1,e\left(\frac{3}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8450 }(1301, a) \) \(1\)\(1\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{3}{13}\right)\)\(e\left(\frac{10}{13}\right)\)\(e\left(\frac{9}{13}\right)\)\(1\)\(e\left(\frac{4}{13}\right)\)\(1\)\(e\left(\frac{11}{13}\right)\)\(e\left(\frac{3}{13}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8450 }(1301,a) \;\) at \(\;a = \) e.g. 2