Properties

Label 8450.1249
Modulus $8450$
Conductor $845$
Order $26$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([13,12]))
 
Copy content pari:[g,chi] = znchar(Mod(1249,8450))
 

Basic properties

Modulus: \(8450\)
Conductor: \(845\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{845}(404,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8450.bi

\(\chi_{8450}(599,\cdot)\) \(\chi_{8450}(1249,\cdot)\) \(\chi_{8450}(1899,\cdot)\) \(\chi_{8450}(2549,\cdot)\) \(\chi_{8450}(3199,\cdot)\) \(\chi_{8450}(3849,\cdot)\) \(\chi_{8450}(4499,\cdot)\) \(\chi_{8450}(5149,\cdot)\) \(\chi_{8450}(5799,\cdot)\) \(\chi_{8450}(6449,\cdot)\) \(\chi_{8450}(7749,\cdot)\) \(\chi_{8450}(8399,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: Number field defined by a degree 26 polynomial

Values on generators

\((677,3551)\) → \((-1,e\left(\frac{6}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8450 }(1249, a) \) \(1\)\(1\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{23}{26}\right)\)\(e\left(\frac{6}{13}\right)\)\(e\left(\frac{7}{13}\right)\)\(e\left(\frac{23}{26}\right)\)\(1\)\(e\left(\frac{8}{13}\right)\)\(-1\)\(e\left(\frac{5}{26}\right)\)\(e\left(\frac{6}{13}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8450 }(1249,a) \;\) at \(\;a = \) e.g. 2