sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8450, base_ring=CyclotomicField(260))
M = H._module
chi = DirichletCharacter(H, M([221,75]))
pari:[g,chi] = znchar(Mod(1097,8450))
\(\chi_{8450}(73,\cdot)\)
\(\chi_{8450}(187,\cdot)\)
\(\chi_{8450}(203,\cdot)\)
\(\chi_{8450}(317,\cdot)\)
\(\chi_{8450}(333,\cdot)\)
\(\chi_{8450}(447,\cdot)\)
\(\chi_{8450}(463,\cdot)\)
\(\chi_{8450}(723,\cdot)\)
\(\chi_{8450}(837,\cdot)\)
\(\chi_{8450}(853,\cdot)\)
\(\chi_{8450}(967,\cdot)\)
\(\chi_{8450}(983,\cdot)\)
\(\chi_{8450}(1097,\cdot)\)
\(\chi_{8450}(1227,\cdot)\)
\(\chi_{8450}(1373,\cdot)\)
\(\chi_{8450}(1487,\cdot)\)
\(\chi_{8450}(1503,\cdot)\)
\(\chi_{8450}(1617,\cdot)\)
\(\chi_{8450}(1633,\cdot)\)
\(\chi_{8450}(1747,\cdot)\)
\(\chi_{8450}(1763,\cdot)\)
\(\chi_{8450}(1877,\cdot)\)
\(\chi_{8450}(2023,\cdot)\)
\(\chi_{8450}(2137,\cdot)\)
\(\chi_{8450}(2153,\cdot)\)
\(\chi_{8450}(2283,\cdot)\)
\(\chi_{8450}(2397,\cdot)\)
\(\chi_{8450}(2413,\cdot)\)
\(\chi_{8450}(2527,\cdot)\)
\(\chi_{8450}(2673,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{17}{20}\right),e\left(\frac{15}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 8450 }(1097, a) \) |
\(1\) | \(1\) | \(e\left(\frac{187}{260}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{57}{130}\right)\) | \(e\left(\frac{81}{260}\right)\) | \(e\left(\frac{43}{260}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{217}{260}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{41}{260}\right)\) | \(e\left(\frac{31}{130}\right)\) |
sage:chi.jacobi_sum(n)