sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(845, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,41]))
pari:[g,chi] = znchar(Mod(829,845))
| Modulus: | \(845\) | |
| Conductor: | \(845\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{845}(4,\cdot)\)
\(\chi_{845}(49,\cdot)\)
\(\chi_{845}(69,\cdot)\)
\(\chi_{845}(114,\cdot)\)
\(\chi_{845}(134,\cdot)\)
\(\chi_{845}(179,\cdot)\)
\(\chi_{845}(199,\cdot)\)
\(\chi_{845}(244,\cdot)\)
\(\chi_{845}(264,\cdot)\)
\(\chi_{845}(309,\cdot)\)
\(\chi_{845}(329,\cdot)\)
\(\chi_{845}(374,\cdot)\)
\(\chi_{845}(394,\cdot)\)
\(\chi_{845}(439,\cdot)\)
\(\chi_{845}(459,\cdot)\)
\(\chi_{845}(504,\cdot)\)
\(\chi_{845}(524,\cdot)\)
\(\chi_{845}(569,\cdot)\)
\(\chi_{845}(589,\cdot)\)
\(\chi_{845}(634,\cdot)\)
\(\chi_{845}(719,\cdot)\)
\(\chi_{845}(764,\cdot)\)
\(\chi_{845}(784,\cdot)\)
\(\chi_{845}(829,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,171)\) → \((-1,e\left(\frac{41}{78}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
| \( \chi_{ 845 }(829, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)