sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(845, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,38]))
pari:[g,chi] = znchar(Mod(549,845))
| Modulus: | \(845\) | |
| Conductor: | \(845\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{845}(9,\cdot)\)
\(\chi_{845}(29,\cdot)\)
\(\chi_{845}(74,\cdot)\)
\(\chi_{845}(94,\cdot)\)
\(\chi_{845}(139,\cdot)\)
\(\chi_{845}(159,\cdot)\)
\(\chi_{845}(204,\cdot)\)
\(\chi_{845}(224,\cdot)\)
\(\chi_{845}(269,\cdot)\)
\(\chi_{845}(289,\cdot)\)
\(\chi_{845}(334,\cdot)\)
\(\chi_{845}(354,\cdot)\)
\(\chi_{845}(399,\cdot)\)
\(\chi_{845}(419,\cdot)\)
\(\chi_{845}(464,\cdot)\)
\(\chi_{845}(549,\cdot)\)
\(\chi_{845}(594,\cdot)\)
\(\chi_{845}(614,\cdot)\)
\(\chi_{845}(659,\cdot)\)
\(\chi_{845}(679,\cdot)\)
\(\chi_{845}(724,\cdot)\)
\(\chi_{845}(744,\cdot)\)
\(\chi_{845}(789,\cdot)\)
\(\chi_{845}(809,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,171)\) → \((-1,e\left(\frac{19}{39}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
| \( \chi_{ 845 }(549, a) \) |
\(1\) | \(1\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)