Properties

Label 845.407
Modulus $845$
Conductor $845$
Order $156$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([39,98]))
 
Copy content pari:[g,chi] = znchar(Mod(407,845))
 

Basic properties

Modulus: \(845\)
Conductor: \(845\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 845.bk

\(\chi_{845}(17,\cdot)\) \(\chi_{845}(43,\cdot)\) \(\chi_{845}(62,\cdot)\) \(\chi_{845}(82,\cdot)\) \(\chi_{845}(88,\cdot)\) \(\chi_{845}(108,\cdot)\) \(\chi_{845}(127,\cdot)\) \(\chi_{845}(153,\cdot)\) \(\chi_{845}(173,\cdot)\) \(\chi_{845}(212,\cdot)\) \(\chi_{845}(218,\cdot)\) \(\chi_{845}(238,\cdot)\) \(\chi_{845}(257,\cdot)\) \(\chi_{845}(277,\cdot)\) \(\chi_{845}(283,\cdot)\) \(\chi_{845}(303,\cdot)\) \(\chi_{845}(322,\cdot)\) \(\chi_{845}(342,\cdot)\) \(\chi_{845}(348,\cdot)\) \(\chi_{845}(368,\cdot)\) \(\chi_{845}(387,\cdot)\) \(\chi_{845}(407,\cdot)\) \(\chi_{845}(413,\cdot)\) \(\chi_{845}(433,\cdot)\) \(\chi_{845}(452,\cdot)\) \(\chi_{845}(472,\cdot)\) \(\chi_{845}(478,\cdot)\) \(\chi_{845}(498,\cdot)\) \(\chi_{845}(517,\cdot)\) \(\chi_{845}(537,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((677,171)\) → \((i,e\left(\frac{49}{78}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(14\)
\( \chi_{ 845 }(407, a) \) \(-1\)\(1\)\(e\left(\frac{137}{156}\right)\)\(e\left(\frac{101}{156}\right)\)\(e\left(\frac{59}{78}\right)\)\(e\left(\frac{41}{78}\right)\)\(e\left(\frac{73}{156}\right)\)\(e\left(\frac{33}{52}\right)\)\(e\left(\frac{23}{78}\right)\)\(e\left(\frac{55}{78}\right)\)\(e\left(\frac{21}{52}\right)\)\(e\left(\frac{9}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 845 }(407,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 845 }(407,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 845 }(407,·),\chi_{ 845 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 845 }(407,·)) \;\) at \(\; a,b = \) e.g. 1,2