Properties

Label 845.2
Modulus $845$
Conductor $845$
Order $156$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([39,1]))
 
Copy content pari:[g,chi] = znchar(Mod(2,845))
 

Basic properties

Modulus: \(845\)
Conductor: \(845\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 845.bn

\(\chi_{845}(2,\cdot)\) \(\chi_{845}(32,\cdot)\) \(\chi_{845}(33,\cdot)\) \(\chi_{845}(63,\cdot)\) \(\chi_{845}(67,\cdot)\) \(\chi_{845}(97,\cdot)\) \(\chi_{845}(98,\cdot)\) \(\chi_{845}(128,\cdot)\) \(\chi_{845}(132,\cdot)\) \(\chi_{845}(162,\cdot)\) \(\chi_{845}(163,\cdot)\) \(\chi_{845}(193,\cdot)\) \(\chi_{845}(197,\cdot)\) \(\chi_{845}(227,\cdot)\) \(\chi_{845}(228,\cdot)\) \(\chi_{845}(262,\cdot)\) \(\chi_{845}(292,\cdot)\) \(\chi_{845}(293,\cdot)\) \(\chi_{845}(323,\cdot)\) \(\chi_{845}(327,\cdot)\) \(\chi_{845}(358,\cdot)\) \(\chi_{845}(388,\cdot)\) \(\chi_{845}(392,\cdot)\) \(\chi_{845}(422,\cdot)\) \(\chi_{845}(423,\cdot)\) \(\chi_{845}(453,\cdot)\) \(\chi_{845}(457,\cdot)\) \(\chi_{845}(487,\cdot)\) \(\chi_{845}(518,\cdot)\) \(\chi_{845}(522,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((677,171)\) → \((i,e\left(\frac{1}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(14\)
\( \chi_{ 845 }(2, a) \) \(1\)\(1\)\(e\left(\frac{10}{39}\right)\)\(e\left(\frac{85}{156}\right)\)\(e\left(\frac{20}{39}\right)\)\(e\left(\frac{125}{156}\right)\)\(e\left(\frac{73}{78}\right)\)\(e\left(\frac{10}{13}\right)\)\(e\left(\frac{7}{78}\right)\)\(e\left(\frac{103}{156}\right)\)\(e\left(\frac{3}{52}\right)\)\(e\left(\frac{5}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 845 }(2,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 845 }(2,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 845 }(2,·),\chi_{ 845 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 845 }(2,·)) \;\) at \(\; a,b = \) e.g. 1,2