sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(845, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,71]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(244,845))
         
     
    
  
   | Modulus: |  \(845\) |   |  
   | Conductor: |  \(845\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(78\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{845}(4,\cdot)\)
  \(\chi_{845}(49,\cdot)\)
  \(\chi_{845}(69,\cdot)\)
  \(\chi_{845}(114,\cdot)\)
  \(\chi_{845}(134,\cdot)\)
  \(\chi_{845}(179,\cdot)\)
  \(\chi_{845}(199,\cdot)\)
  \(\chi_{845}(244,\cdot)\)
  \(\chi_{845}(264,\cdot)\)
  \(\chi_{845}(309,\cdot)\)
  \(\chi_{845}(329,\cdot)\)
  \(\chi_{845}(374,\cdot)\)
  \(\chi_{845}(394,\cdot)\)
  \(\chi_{845}(439,\cdot)\)
  \(\chi_{845}(459,\cdot)\)
  \(\chi_{845}(504,\cdot)\)
  \(\chi_{845}(524,\cdot)\)
  \(\chi_{845}(569,\cdot)\)
  \(\chi_{845}(589,\cdot)\)
  \(\chi_{845}(634,\cdot)\)
  \(\chi_{845}(719,\cdot)\)
  \(\chi_{845}(764,\cdot)\)
  \(\chi_{845}(784,\cdot)\)
  \(\chi_{845}(829,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((677,171)\) → \((-1,e\left(\frac{71}{78}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |       
    
    
      | \( \chi_{ 845 }(244, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)