sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(845, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,28]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(139,845))
         
     
    
  
   | Modulus: |  \(845\) |   |  
   | Conductor: |  \(845\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(78\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{845}(9,\cdot)\)
  \(\chi_{845}(29,\cdot)\)
  \(\chi_{845}(74,\cdot)\)
  \(\chi_{845}(94,\cdot)\)
  \(\chi_{845}(139,\cdot)\)
  \(\chi_{845}(159,\cdot)\)
  \(\chi_{845}(204,\cdot)\)
  \(\chi_{845}(224,\cdot)\)
  \(\chi_{845}(269,\cdot)\)
  \(\chi_{845}(289,\cdot)\)
  \(\chi_{845}(334,\cdot)\)
  \(\chi_{845}(354,\cdot)\)
  \(\chi_{845}(399,\cdot)\)
  \(\chi_{845}(419,\cdot)\)
  \(\chi_{845}(464,\cdot)\)
  \(\chi_{845}(549,\cdot)\)
  \(\chi_{845}(594,\cdot)\)
  \(\chi_{845}(614,\cdot)\)
  \(\chi_{845}(659,\cdot)\)
  \(\chi_{845}(679,\cdot)\)
  \(\chi_{845}(724,\cdot)\)
  \(\chi_{845}(744,\cdot)\)
  \(\chi_{845}(789,\cdot)\)
  \(\chi_{845}(809,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((677,171)\) → \((-1,e\left(\frac{14}{39}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |       
    
    
      | \( \chi_{ 845 }(139, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)