sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(840, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,6,0,3,4]))
pari:[g,chi] = znchar(Mod(37,840))
\(\chi_{840}(37,\cdot)\)
\(\chi_{840}(277,\cdot)\)
\(\chi_{840}(373,\cdot)\)
\(\chi_{840}(613,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((631,421,281,337,241)\) → \((1,-1,1,i,e\left(\frac{1}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 840 }(37, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(i\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)