Properties

Label 8352.hb
Modulus $8352$
Conductor $2784$
Order $56$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8352, base_ring=CyclotomicField(56)) M = H._module chi = DirichletCharacter(H, M([28,35,28,48])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(107,8352)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8352\)
Conductor: \(2784\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(56\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2784.eh
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{56})$
Fixed field: Number field defined by a degree 56 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(31\) \(35\)
\(\chi_{8352}(107,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{45}{56}\right)\) \(1\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{56}\right)\)
\(\chi_{8352}(683,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{53}{56}\right)\) \(1\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{41}{56}\right)\)
\(\chi_{8352}(1475,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{51}{56}\right)\) \(1\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{31}{56}\right)\)
\(\chi_{8352}(1619,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{15}{56}\right)\) \(1\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{19}{56}\right)\)
\(\chi_{8352}(1763,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{27}{56}\right)\) \(1\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{23}{56}\right)\)
\(\chi_{8352}(1979,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{33}{56}\right)\) \(1\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{53}{56}\right)\)
\(\chi_{8352}(2195,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{31}{56}\right)\) \(1\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{43}{56}\right)\)
\(\chi_{8352}(2771,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{39}{56}\right)\) \(1\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{27}{56}\right)\)
\(\chi_{8352}(3563,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{37}{56}\right)\) \(1\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{17}{56}\right)\)
\(\chi_{8352}(3707,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{1}{56}\right)\) \(1\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{56}\right)\)
\(\chi_{8352}(3851,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{13}{56}\right)\) \(1\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{56}\right)\)
\(\chi_{8352}(4067,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{19}{56}\right)\) \(1\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{39}{56}\right)\)
\(\chi_{8352}(4283,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{17}{56}\right)\) \(1\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{29}{56}\right)\)
\(\chi_{8352}(4859,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{25}{56}\right)\) \(1\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{56}\right)\)
\(\chi_{8352}(5651,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{23}{56}\right)\) \(1\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{56}\right)\)
\(\chi_{8352}(5795,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{43}{56}\right)\) \(1\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{47}{56}\right)\)
\(\chi_{8352}(5939,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{55}{56}\right)\) \(1\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{51}{56}\right)\)
\(\chi_{8352}(6155,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{5}{56}\right)\) \(1\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{25}{56}\right)\)
\(\chi_{8352}(6371,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{3}{56}\right)\) \(1\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{15}{56}\right)\)
\(\chi_{8352}(6947,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{11}{56}\right)\) \(1\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{55}{56}\right)\)
\(\chi_{8352}(7739,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{9}{56}\right)\) \(1\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{45}{56}\right)\)
\(\chi_{8352}(7883,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{29}{56}\right)\) \(1\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{33}{56}\right)\)
\(\chi_{8352}(8027,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{41}{56}\right)\) \(1\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{37}{56}\right)\)
\(\chi_{8352}(8243,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{47}{56}\right)\) \(1\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{56}\right)\)