sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8352, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,7,4,6]))
pari:[g,chi] = znchar(Mod(3149,8352))
\(\chi_{8352}(1781,\cdot)\)
\(\chi_{8352}(3149,\cdot)\)
\(\chi_{8352}(5957,\cdot)\)
\(\chi_{8352}(7325,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1567,5221,929,4033)\) → \((1,e\left(\frac{7}{8}\right),-1,-i)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(31\) | \(35\) |
| \( \chi_{ 8352 }(3149, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(-i\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)