Properties

Label 833.32
Modulus $833$
Conductor $833$
Order $168$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(168)) M = H._module chi = DirichletCharacter(H, M([16,63]))
 
Copy content pari:[g,chi] = znchar(Mod(32,833))
 

Basic properties

Modulus: \(833\)
Conductor: \(833\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(168\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 833.bl

\(\chi_{833}(2,\cdot)\) \(\chi_{833}(9,\cdot)\) \(\chi_{833}(25,\cdot)\) \(\chi_{833}(32,\cdot)\) \(\chi_{833}(53,\cdot)\) \(\chi_{833}(60,\cdot)\) \(\chi_{833}(93,\cdot)\) \(\chi_{833}(100,\cdot)\) \(\chi_{833}(121,\cdot)\) \(\chi_{833}(144,\cdot)\) \(\chi_{833}(151,\cdot)\) \(\chi_{833}(172,\cdot)\) \(\chi_{833}(179,\cdot)\) \(\chi_{833}(212,\cdot)\) \(\chi_{833}(219,\cdot)\) \(\chi_{833}(240,\cdot)\) \(\chi_{833}(247,\cdot)\) \(\chi_{833}(270,\cdot)\) \(\chi_{833}(291,\cdot)\) \(\chi_{833}(298,\cdot)\) \(\chi_{833}(331,\cdot)\) \(\chi_{833}(338,\cdot)\) \(\chi_{833}(359,\cdot)\) \(\chi_{833}(366,\cdot)\) \(\chi_{833}(382,\cdot)\) \(\chi_{833}(389,\cdot)\) \(\chi_{833}(417,\cdot)\) \(\chi_{833}(450,\cdot)\) \(\chi_{833}(457,\cdot)\) \(\chi_{833}(478,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{168})$
Fixed field: Number field defined by a degree 168 polynomial (not computed)

Values on generators

\((52,785)\) → \((e\left(\frac{2}{21}\right),e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 833 }(32, a) \) \(1\)\(1\)\(e\left(\frac{61}{84}\right)\)\(e\left(\frac{79}{168}\right)\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{107}{168}\right)\)\(e\left(\frac{11}{56}\right)\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{79}{84}\right)\)\(e\left(\frac{61}{168}\right)\)\(e\left(\frac{73}{168}\right)\)\(e\left(\frac{155}{168}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 833 }(32,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 833 }(32,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 833 }(32,·),\chi_{ 833 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 833 }(32,·)) \;\) at \(\; a,b = \) e.g. 1,2