sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(828, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,11,9]))
pari:[g,chi] = znchar(Mod(263,828))
| Modulus: | \(828\) | |
| Conductor: | \(828\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{828}(11,\cdot)\)
\(\chi_{828}(83,\cdot)\)
\(\chi_{828}(155,\cdot)\)
\(\chi_{828}(191,\cdot)\)
\(\chi_{828}(203,\cdot)\)
\(\chi_{828}(227,\cdot)\)
\(\chi_{828}(263,\cdot)\)
\(\chi_{828}(383,\cdot)\)
\(\chi_{828}(419,\cdot)\)
\(\chi_{828}(479,\cdot)\)
\(\chi_{828}(527,\cdot)\)
\(\chi_{828}(563,\cdot)\)
\(\chi_{828}(635,\cdot)\)
\(\chi_{828}(659,\cdot)\)
\(\chi_{828}(695,\cdot)\)
\(\chi_{828}(707,\cdot)\)
\(\chi_{828}(743,\cdot)\)
\(\chi_{828}(779,\cdot)\)
\(\chi_{828}(803,\cdot)\)
\(\chi_{828}(815,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((415,461,649)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{3}{22}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 828 }(263, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{43}{66}\right)\) | \(e\left(\frac{8}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)