sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8216, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,52,63]))
pari:[g,chi] = znchar(Mod(7757,8216))
| Modulus: | \(8216\) | |
| Conductor: | \(8216\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8216}(61,\cdot)\)
\(\chi_{8216}(373,\cdot)\)
\(\chi_{8216}(861,\cdot)\)
\(\chi_{8216}(965,\cdot)\)
\(\chi_{8216}(1621,\cdot)\)
\(\chi_{8216}(1829,\cdot)\)
\(\chi_{8216}(2245,\cdot)\)
\(\chi_{8216}(2349,\cdot)\)
\(\chi_{8216}(3253,\cdot)\)
\(\chi_{8216}(3389,\cdot)\)
\(\chi_{8216}(3493,\cdot)\)
\(\chi_{8216}(4293,\cdot)\)
\(\chi_{8216}(5125,\cdot)\)
\(\chi_{8216}(5229,\cdot)\)
\(\chi_{8216}(5749,\cdot)\)
\(\chi_{8216}(5781,\cdot)\)
\(\chi_{8216}(6061,\cdot)\)
\(\chi_{8216}(6821,\cdot)\)
\(\chi_{8216}(7309,\cdot)\)
\(\chi_{8216}(7517,\cdot)\)
\(\chi_{8216}(7653,\cdot)\)
\(\chi_{8216}(7757,\cdot)\)
\(\chi_{8216}(7933,\cdot)\)
\(\chi_{8216}(8037,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2055,4109,3161,3953)\) → \((1,-1,e\left(\frac{2}{3}\right),e\left(\frac{21}{26}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 8216 }(7757, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)