sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8216, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([0,78,117,44]))
pari:[g,chi] = znchar(Mod(525,8216))
| Modulus: | \(8216\) | |
| Conductor: | \(8216\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8216}(5,\cdot)\)
\(\chi_{8216}(421,\cdot)\)
\(\chi_{8216}(437,\cdot)\)
\(\chi_{8216}(525,\cdot)\)
\(\chi_{8216}(629,\cdot)\)
\(\chi_{8216}(645,\cdot)\)
\(\chi_{8216}(941,\cdot)\)
\(\chi_{8216}(957,\cdot)\)
\(\chi_{8216}(1269,\cdot)\)
\(\chi_{8216}(1685,\cdot)\)
\(\chi_{8216}(1789,\cdot)\)
\(\chi_{8216}(1893,\cdot)\)
\(\chi_{8216}(2085,\cdot)\)
\(\chi_{8216}(2205,\cdot)\)
\(\chi_{8216}(2293,\cdot)\)
\(\chi_{8216}(2917,\cdot)\)
\(\chi_{8216}(3021,\cdot)\)
\(\chi_{8216}(3125,\cdot)\)
\(\chi_{8216}(3349,\cdot)\)
\(\chi_{8216}(3437,\cdot)\)
\(\chi_{8216}(3557,\cdot)\)
\(\chi_{8216}(3645,\cdot)\)
\(\chi_{8216}(3749,\cdot)\)
\(\chi_{8216}(4061,\cdot)\)
\(\chi_{8216}(4181,\cdot)\)
\(\chi_{8216}(4285,\cdot)\)
\(\chi_{8216}(4389,\cdot)\)
\(\chi_{8216}(4701,\cdot)\)
\(\chi_{8216}(4789,\cdot)\)
\(\chi_{8216}(4909,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2055,4109,3161,3953)\) → \((1,-1,-i,e\left(\frac{11}{39}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 8216 }(525, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{115}{156}\right)\) | \(e\left(\frac{31}{156}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{145}{156}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{43}{156}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)